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a b s t r a c t

Unsupervised domain adaptation (UDA) person re-identification (re-ID) aims to transfer knowledge
from a labeled source domain to guide the task proposed on the unlabeled target domain, in which
people share different identifications and cross multiple camera views within two different domains.
Consequently, traditional UDA re-ID techniques generally suffer due to the negative transfer caused
by the inevitable noise generated by variant backgrounds, while the foregrounds also lack sufficient
reliable identification knowledge to guarantee the qualified cross-domain re-ID. To remedy the raised
negative transfer caused by variant backgrounds, we propose a novel body structure estimation (BSE)
mechanism enforced semantic driven attention network (SDA), which enables the designed model with
semantic effectiveness to distinguish the foreground and background. In searching for the reliable
feature representations as in the foreground areas, we propose a novel label refinery mechanism
to dynamically optimize the traditional attribute learning techniques for the strengthened personal
attribute features and thus resulting the qualified UDA-re-ID. Extensive experiments demonstrate the
effectiveness of our method in solving unsupervised domain adaptation person re-ID task on three
large-scale datasets including Market-1501, DukeMTMC-reID and MSMT17.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Person re-identification intends to identify the person of in-
erest across non-overlapping cameras [1]. Due to its remarkable
ontributions to video surveillance and criminal investigation,
erson re-ID has received enormous research attentions in re-
ent years. Recently, thanks to the impressive development of
eep learning (DL) [2–4], the accuracy of supervised person re-
D has been significantly lifted via borrowing the merits of the
ighly discriminative feature representation enforced deep mod-
ls [5–9]. However, these DL-based approaches crucially rely on
ufficient annotated labels which are labor-intensive to obtain,
hus restricting their application in real-world scenarios when
onfronting with the newly generated huge quantity data. To
emedy this issue, increasing efforts have been made on the effec-
ive domain adaptation techniques which aim at transferring the
nowledge from the well-labeled source domain to the unlabeled
arget domain despite the large distribution divergence among
he sample distributions. For this purpose, unsupervised domain
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adaptation techniques greatly encourage the development of the
cross-domain person re-ID.

Specifically, unsupervised domain adaptation (UDA) person
re-ID boosts the accuracy on a fully unlabeled image dataset
(target domain) by leveraging the knowledge from an existing
labeled image dataset (source domain) through domain adapta-
tion techniques. However, traditional UDA approaches for generic
classification tasks [10–13] implicitly assume that the source
domain and target domain share the same label space, while in
person re-ID tasks the source and target domain are constructed
by different people thus different labels. To solve this issue,
pseudo label based methods [14–18] utilize the discriminative
effectiveness of the source model to assign pseudo labels for
recognizing the unlabeled target domain, which has received
more attentions due to its simple yet effective rationale.

Previous UDA-based person re-ID techniques significantly lift
the performance via simply enjoying the fruits of UDA, i.e., it
explicitly reduces the domain shift to ensure the qualified knowl-
edge transferring across the different domains. However, it still
falls short due to the following two challenges which are visual-
ized in Fig. 1.

• Challenge 1: (Varying backgrounds induced negative
transfer) We argue that existing UDA-based person re-ID
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Fig. 1. Illustration of two challenges solved by our proposed SDAAL. In Fig. 1(a), the top part illustrates an example query image Iq with its neighbor images I1, I2, I3, I4
earched by a baseline model according to feature similarities. The bottom part provides an abstract calculation of the total similarities between each neighbor image
nd the query according to their background similarity and foreground similarity. Different quantities of blue and yellow rectangles denote the background and
oreground feature similarity degrees respectively and larger quantity corresponds to higher feature similarity. The multipliers ‘‘1’’ mean the attention scores which
enote how much importance to be attached to the background and foreground similarity. In Fig. 1(b), our proposed Semantic Driven Attention module re-allocates
he importance assigned to the background and foreground similarities for reducing the impact of the background, thus removing the noisy image I4 . In Fig. 1(c),
e strengthen the discriminability of the foreground features with the qualified attribute features according to the Attribute Recognition Module, thus decreasing
he foreground similarity degree of the noisy image I2 from two yellow rectangles denoted in Fig. 1(b) to one rectangle.
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methods fail to distinguish the parts of foreground and back-
ground in the training model. Therefore, as the unavoidable
noise, the varying backgrounds are generally trained during
the model training, which increases the burden for effective
functional learning as well as induces the negative transfer.
Motivated by this, it is beneficial to enable the model to
distinguish the foreground and background, so it can avoid
the brutally forced knowledge transfer among the varying
backgrounds.

• Challenge 2: (Unreliable attribute feature learning caused
indiscriminative feature representation) Due to the lack of
sufficient identification knowledge of the foreground people
in the target domain, the discriminability of the learned
model is reduced significantly. To address this problem,
previous researches further explore the effectiveness of the
attribute learning by searching the newly generated attribute
features. Unfortunately, these methods generally suffered
due to the unreliable attribute features extracted by the fixed
attribute learning model, which is unable to well adapt to the
unlabeled target domain without model fine-tuning.

To remedy the raised challenges, in this paper, we propose a
ovel Semantic Driven Attention network with Attribute Learning
SDAAL). As shown in Fig. 1(a), previous UDA methods fail to
istinguish the background and foreground, thus attaching equal
mportance to the two parts of images when training the model.
owever, our proposed SDAAL discriminatively learns the fore-
round/background parts to reduce the negative transfer and
trengthens the attribute learning techniques to enhance the
iscriminative feature representation. To remedy Challenge 1, we
irst propose the semantic driven attention (SDA) based network,
hich can distinguish the foreground and background and re-
eight the importance of the different foreground/background
arts respectively (Fig. 1(b)). It is also interesting to note that,
he proposed SDA is hybridized with the body structure esti-
ation (BSE) mechanism, so our attention model can enjoy the
2

igh-level semantic body part features rather than the low-level
ixel features. As a result, the proposed mechanism reduces the
entioned negative transfer and achieves the low computational
fficiency simultaneously. To remedy Challenge 2, we introduce
n attribute recognition module (ARM) with a novel label refin-
ry mechanism, which can dynamically optimize the ARM for
trengthening the discriminability of the foreground descriptions
n the target dataset (Fig. 1(c)). Specifically, we semantically di-
ide the image into four sub-images, of which the corresponding
ttribute features are extracted to formalize the required personal
ttribute. Finally, the fine-tuning of the model is implemented by
he label refinery mechanism.

The main contributions of this paper are summarized as fol-
ows:

• We introduce a novel Semantic Driven Attention network
(SDA) which enables the trained model with semantic view-
sight to distinguish the background and foreground, thus
reducing the potentially existed negative transfer in solving
the UDA-based reID. Moreover, by making use of the BSE
mechanism, SDA enjoys the high-level semantic body part
features as well as achieves high training efficiency.

• We propose a novel label refinery mechanism to improve
the reliability of the attribute features in the foreground
people of the unlabeled target domain. In this mechanism, it
can dynamically optimize the traditional attribute learning
techniques by well adapting the unseen target domain and
extracting the qualified attribute features, thus yielding the
qualified UDA-re-ID.

• Extensive experiments on three large-scale datasets demon-
strate that our proposed method achieves competitive re-
sults in solving unsupervised domain adaptation person re-
ID task.
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. Related works

.1. Unsupervised domain adaptation approaches

We categorize unsupervised domain adaptation person re-ID
pproaches into three branches.
Learning domain-invariant feature based methods [19–22]

ntend to narrow the feature distribution discrepancy across the
ource and target domain into the common feature space using
ome metric measurements, e.g., Maximum Mean Discrepancy
MMD) [23] or Earth Mover’s Distance (EMD) [24]. Although these
echniques have achieved significant progresses, they require the
trict consistency of label spaces between the source domain and
arget domain. Unfortunately, the pedestrians of the two domains
n UDA re-ID tasks share different identifications, thus falling
hort to simply embrace previous experiences to solve the UDA
e-ID tasks.

Style transfer based methods [25–27] transfer source labeled
mages to match the style of target unlabeled images by apply-
ng generative adversarial networks (GANs) [28]. CycleGAN [25]
roposes the approach for translating an image from a source
omain to a target domain without paired examples using the
dversarial loss and cycle consistency loss. To further improve the
uality of translation, PTGAN [26] introduces an extra constraint
o preserve the content similarity of images during translation
y leveraging the consistency of the foreground. In addition, SP-
AN [27] combines the Siamese network with the CycleGAN and
roposes to perform the image translation with the constraints
f two types of unsupervised similarities, i.e., self-similarity and

domain-dissimilarity. However, to the best of our knowledge,
the mentioned style transfer methods generally care about the
global distribution alignment while ignoring to explore the spe-
cific sub-domain discriminability, thus being unable to reduce the
potentially existed negative transfer. Pseudo label based meth-
ods [14–17] typically consists of three main steps: 1. pre-training
the feature extraction model on the labeled source domain; 2.
assigning pseudo labels to the target domain according to the pre-
trained model; and 3. fine-tuning the model on the target domain
with pseudo labels. Generally, the reliability of pseudo labels is
influenced by the domain gap between the source domain and
target domain. To remedy the raised issue, Zheng et al. [29]
propose to evaluate the reliability of pseudo labels by calculating
the inconsistency of two models according to their predictions
and then incorporate the uncertainty of samples to the objective
losses. To avoid introduce extra parameters or modules, Zheng
et al. [30] allow the model to output the semantic segmentation
prediction as well as the uncertainty of the prediction via the
prediction variance in unsupervised semantic segmentation adap-
tation. Inspired by the reliable sample selection methods in unsu-
pervised learning [31,32], several popular person re-identification
researches also propose to exploit how to make the best use of
the target pseudo-labeled candidates through various sampling
strategies. Different from the previous static sampling strategies,
Wu et al. [33] propose a dynamic sampling strategy to increase
the number of the selected pseudo-labeled candidates step by
step for sake of model robustness. In [34], they further utilize
the unselected data whose pseudo labels are not reliable for
jointly fine-tuning the initial CNN model through the exclusive
loss. However, they adopt the Nearest Neighbors (NN) classifier to
define the confidence of label estimation as the distance between
the unlabeled data and its nearest labeled neighbor, while the
rationale is that the labeled and unlabeled data share the same
distribution. Some other researches related to our work attempt
to fully exploit the similarities between unlabeled target samples.
Fu et al. [17] introduce the Self-similarity Grouping (SSG) method
by mining the potential similarity of the global body and local
3

parts to build multiple independent clusters. Yang et al. [16]
design an asymmetric co-teaching framework which cooperates
two models to select more reliable samples with pseudo labels for
each other. Through the alternative training of these two models,
the clustering accuracy can be guaranteed with training samples
both clean and miscellaneous.

Despite the remarkable performance achieved by previous
researches, inadequate disentanglement of the varying back-
grounds and the foreground is still an intractable problem to
solve. Our proposed framework explores the contributions of at-
tention mechanism to distinguish the background and foreground
with a semantic view-sight and employs the specifically proposed
attribute learning to further strengthen the foreground feature
descriptions, thus yielding a qualified UDA re-ID.

2.2. Attention mechanism

Inspired by the human perception scheme, attention mecha-
nism has been witnessed superior effectiveness in natural lan-
guage processing [35–37] and computer vision fields [38–40].
Starting from the Transformer [35] proposed by Vaswani et al.,
the effectiveness of the attention mechanism is well explored
to leverage the global knowledge among the input and output
dialogs for improving the machine translation tasks. Lately, Fan
et al. [37] design a novel recurrent attention network to yield the
attention-enhanced spatial context for Visual Dialog. In computer
vision tasks, Dosovitskiy et al. [39] argue that the reliance of
attention on CNN is not necessary and apply a novel Vision
Transformer (ViT) to sequential image patches for further lifting
the performance of image classification tasks. Fan et al. [40] firstly
apply the Transformer for point cloud video modeling and design
the P4 Transformer for spatio-temporal modeling by using the
raw point cloud videos.

In person re-ID, attention mechanism aims to enforce more
attention for identifying the informative foreground areas [41–
43]. Recently, Chen et al. [5] propose a joint spatial–temporal
attention model (STAL) to learn the quality scores of multiple
spatial–temporal units. Wang et al. [44] extend the concept of
self-attention [35] by calculating the interaction between pixel-
pairs to obtain the global pixel-level attention respectively, thus
promoting the development of attention mechanism in person
re-identification. Following this research line, Chen et al. [45] seg-
ment person sequences into multiple snippets and then calculate
the self-attention within each snippet for feature embedding. Liu
et al. [46] apply the non-local attention module to incorporate
video characteristics into the representation and validate the
effectiveness of non-local attention in solving person re-ID tasks.
In [47], Li et al. categorize the attention mechanism into hard
region-level attention as well as the soft pixel-level attention and
combine them to form a unified attention block for the optimized
feature representations. However, the hard regional attention is
learned simply by searching the candidate transformation matrix
without considering the relationship between each regions. In
this research, we explore the effectiveness of non-local attention
as proposed in unsupervised domain adaptation re-ID tasks and
seamlessly embed the body structure estimation into attention
generation to strengthen the discriminability of re-ID model with
semantic power.

2.3. Attribute learning

Attribute learning has received significant attention in per-
son re-identification in terms of its high reputation in providing
additional discriminative effectiveness through the extracted in-
variant property of attributes, e.g., gender or age. Su et al. [48]
propose a three-stage semi-supervised deep attribute learning
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Fig. 2. The overall architecture of our proposed SDAAL, which consists of three key parts: (a) Semantic Driven Attention (SDA) based Module embedded with four
DA blocks enable the model to re-weight the importance of the background and the foreground, thus obtaining more discriminative identity features efficiently.
b) Attribute Recognition Module extracts four sub-features to predict four sub-groups of attributes associated with different body parts for strengthening the
iscriminability of the foreground. (c) Pseudo Labels Generation introduces the clustering algorithm to generate pseudo identity labels and a label refinery mechanism
o optimize the initial pseudo attribute labels.
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lgorithm, which achieves promising performance through recog-
izing a large set of human attributes from a limited number of
abeled attribute data. Similarly, in ACRN [49], the attribute classi-
ier is pre-trained on separate data and then collaborated with the
ine-tuning process of the person re-id model by using identity
abels. Thereafter, Lin et al. [50] provide the attribute labels of
he Market-1501 and DukeMTMC-reID datasets and demonstrate
he effectiveness of multi-task learning in lifting the re-ID accu-
acy. In addition, attribute features also achieve potential abilities
n unsupervised learning. Wang et al. [51] introduce the trans-
erable joint attribute-identity deep learning (TJ-AIDL) method
or simultaneously learning the attribute-semantic and identity-
iscriminative feature representations without any supervised
nowledge in the target domain. However, previous attribute
earning-based approaches generally rely on quite an amount of
abeled attribute data, which is costly and sometimes impossible
o obtain. Therefore, considering the experimental setting of UDA
erson re-ID, the proposed attribute learning is unable to be
urther optimized on the unlabeled target domain. To approach
he raised issue, in this paper, we propose a novel label refinery
echanism to strengthen the feature extraction model on the
nlabeled target domain via the dynamic optimizing strategy,
hus ensuring the qualified attribute feature learning.

. Methodology

To address the negative transfer caused by varying back-
rounds and the insufficient identification knowledge in unsuper-
ised domain adaptation person re-ID tasks, we propose a novel
emantic-Driven Attention network with Attribute Learning
SDAAL) framework which jointly unifies the semantic driven
ggregation features with personal attribute information within
he proposed framework. For clarification, the overall network ar-
hitecture of the proposed method is shown in Fig. 2. Specifically,
he proposed SDAAL consists of three key parts: (a) Semantic
riven Attention based module (SDA), (b) Attribute Recognition
odule (ARM) and (c) Pseudo Labels Generation. In this section,
e first define the problem and give a brief introduction of our
roposed framework in Section 3.1. Then, we detail our proposed
4

SDA and ARM in Sections 3.2 and 3.3 respectively. Section 3.4
escribes the proposed pseudo labels generation mechanisms
ased on the aforementioned two feature extraction modules.

.1. Problem definition and overall framework

Problem definition: In this paper, we intend to solve the
nsupervised domain adaptation person re-identification (UDA
e-ID) task. The research intention is to learn both the iden-
ity and attribute feature extraction models to recognize the
nlabeled target dataset by using the provided source labeled re-
D dataset and attribute dataset. Specifically, each label in the
ttribute dataset is a 4P-dimensional vector which indicates the
ttribute labels of four sub-groups and each sub-group contains
attributes. Meanwhile, one half of the target dataset will serve
s the training part to fine-tune the models and the rest will be
sed for testing. Then our objective is that given a specific query
mage, following the overall feature similarities generated by the
wo feature extraction models, the learned identity and attribute
eature extraction models retrieve all the images belonging to the
ame identity as the query image.
Overall process: To leverage the knowledge in the labeled

ource domain, the first step is to pre-train the identity feature
xtraction model and attribute feature extraction model on the
wo source datasets respectively. By using the constraints of the
rovided loss functions, we obtain the updated models based on
he source domain. Then we apply the obtained models to the
raining part of the target re-ID data to extract identity features
nd attribute features as the second step. Lately, we perform
he Density-Based Spatial Clustering of Applications with Noise
DBSCAN) clustering algorithm [52] on the identity features and
ssign pseudo identity labels according to the calculated clus-
ering results. For the attribute recognition module, four models
ith the same structure are utilized to predict four sub-groups of
ttributes labels and we also propose a novel label refinery mech-
nism to optimize the pseudo attribute labels with the guidance
f identity features. Subsequently, we propose to fine-tune the
emantic driven attention based module in order to ensure the
re-trained model well suits the target dataset.
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Through performing the feature extraction and fine-tuning
iteratively to dynamically optimize the model parameters, we
obtain the final two models to evaluate the performance on the
testing part of the target dataset. For clarification, we denote
the identity features of testing images extracted by SDA-based
module as {fiden} and the attribute features extracted by ARM as
{fatt} respectively. Then we calculate the total similarity of the
identity features and attribute features between the ith query
image and the jth gallery image as below:

d(i, j) = d(f iiden, f
j
iden) + α · d(f iatt , f

j
att ), (1)

d(f iatt , f
j
att ) =

1
4

∑
part

d(f ipart , f
j
part ), (2)

where d(·) can be determined by the dot product of the two
feature vectors,

{
fpart

}
denotes attribute features of different body

arts and part ∈ {head, upper, lower, foot}. α is the parameter
o balance the contributions of the proposed two losses. The
etermination of α will be discussed in Section 4.4.
For each query image, we rank the feature similarities be-

ween this image with all gallery images and calculate the re-
dentification accuracy of our model according to the ranking
esults. For more clarification of the evaluation protocol, readers
re suggested to refer our Section 4.1.

.2. Semantic driven attention based module

In order to strengthen identity feature descriptions for the
nsupervised domain adaptation person re-ID task, we equip the
ackbone ResNet-50 with semantic driven attention modules.
hus the trained model with semantic view-sight can distinguish
he background and foreground and dynamically re-weight the
mportance of different body parts by hybridizing the body struc-
ure estimation mechanism. In this section, we first revisit the
riginal non-local attention block and then illustrate the details
f our proposed semantic driven attention block.

.2.1. Revisit non-local attention block
The basic non-local attention block aims at aggregating infor-

ation from all positions via a pixel-level attention map. Fig. 3(a)
llustrates the whole process of the original non-local attention
lock. We denote X ∈ RC×N as the feature map of the input,
here C is the dimension of features and N is the number of

positions in the feature map (e.g. N = H × W for images, N =

× W × T for videos). Given an input feature xi ∈ RC sampled
rom X, the corresponding output zi of non-local operation can be
xpressed as:

i = xi + Wz

N∑
j=1

eθ (xi)T φ(xj)

C(x)
(Wv · xj), (3)

where C(x)=
∑

∀j e
θ (xi)T φ(xj) is a normalization factor, i is the index

of a given query position and j enumerates all positions in the
feature map. Wz and Wv are all transform matrices which are
implemented as, e.g., 1 × 1 × 1 convolutions. The number of
channels represented by Wv is set to be half of the number of
channels in xi, which reduces approximate 50% computation effi-
ciency via comparing with the non-local attention block enforced
version. Then the weight matrix Wz projects the aggregated fea-
ture to the original dimensional embedding space from RC ′

(C ′
=

C
2 ) to RC , thus matching the number of channels with the given
input feature xi.

As for the pairwise function eθ (xi)T φ(xj) which calculates the re-
lationship between position i and j, Wang et al. [44] propose four
instantiations to meet various needs in practical applications, i.e.,
 v

5

Gaussian, Embedded Gaussian, Dot product and Concatenation:
(1) Gaussian function is defined as ex

T
i xj , where xTi xj is dot-product

similarity. (2) Embedded Gaussian is a simple extension of Gaus-
sian and defined as eθ (xi)T φ(xj), where θ (xi) = Wθxi and φ(xi) =

φxi are two embeddings. (3) Dot product is defined as a dot-
roduct similarity θ (xi)Tφ(xj). (4) Concatenation is defined as
eLU(wT

f [θ (xi), φ(xj)]), where wf is a weight vector that projects
he concatenated vector to a scalar. In this paper, we adopt the
ost widely-used instantiation, Embedded Gaussian.

.2.2. Semantic driven attention block
As we introduced in Section 3.2.1, the original non-local op-

ration requires heavy computation and memory cost due to the
(N2) complexity of dense affinity calculation between features
f all positions. Directly embedding the non-local attention mod-
le into the backbone for feature extraction increases the training
ifficulty, thus preventing the potential benefit from practical
pplication. We consider a better trade-off between computation
omplexity and performance and introduce a semantic driven
ttention block by exploring the spatial redundancy with a body
tructure estimation mechanism. Fortunately, our proposed SDA
njoys comparative performance as well as high training effi-
iency. Compared to the original non-local attention block, we
ntroduce two additional components which are elaborated as
ollows:

ocal body parts feature concatenation. We first pre-train a
uman pose estimation network [53] with the MPII human pose
ataset [54] and then apply this network to our re-ID images
o predict 14 joints of pedestrians for generating 6 salient body
arts, which correspond to head, torso, right arm, left arm, right
eg and left leg as illustrated in Fig. 4(a). We extract corresponding
ocal features of all the body parts according to their positions
rom the input feature of the semantic driven attention module.
fter applying average pooling to each local feature, we obtain six
eature vectors and concatenate them for the subsequent softmax
ttention calculation. In Fig. 4(a), the original input feature map

∈ RC×H×W is replaced by X∗
∈ RC×M (M = 6). It is worth

oting that HW is always much larger than M , thus naturally
educing the computation cost from O(H2W 2) to O(M2). We then
erform the non-local operation on X∗, given an input feature
∗

i ∈ RC sampled from X, the intermediate output y∗

i before
eature recovery operation can be expressed as:

∗

i = Wz

M∑
j=1

eθ (x∗
i )

T φ(x∗
j )

C(x∗)
(Wv · x∗

j ), (4)

where y∗

i denotes the sum information aggregated from all body
features for each x∗

i . The ‘Softmax attention aggregation’ and
‘1 × 1 × 1’ convolution between Fig. 4(a) and Fig. 4(b) are

implemented by the
∑M

j=1
e
θ (x∗i )

T φ(x∗j )

C(x∗) (Wv · x∗

j ) and Wz in Eq. (4)
espectively.

Note: To enrich the information of feature representations,
any researchers propose to consider the similarity between part

eatures for assisting the similarity measurement between the
lobal features. One direct idea is to divide the feature map into
qual horizontal stripes [7,55–58]. However, the uniform parti-
ion ignores to handle the semantic misalignment caused by the
ariations of poses within different images. To remedy this issue,
he popular methods [5,59,60] take advantage of off-the-shelf
ose estimation models to ensure the divided body part with pose
stimation awareness, thus potentially enforcing the semantic
ffectiveness enhanced body part methods. Our work belongs to
he latter branch but goes one step further in providing a global
iew-sight to see the relationships among different body parts via
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Fig. 3. Details of the original non-local attention block and our proposed semantic driven attention block. Compared to the original non-local block illustrated in
ig. 3(a), we add two components in Fig. 3(b): local body parts feature concatenation and feature recovery, which are illustrated specifically in Fig. 4.
Fig. 4. Details of the local body parts feature concatenation layer and feature recovery layer in our proposed SDA module. We first extract the corresponding features
f six salient body parts (head, right arm, left arm, torsor, right leg and left leg) from the input feature of the SDA according to the 14 joints predicted by the human
ose estimation network. Then we apply average pooling to these six features and concatenate them for further softmax attention calculation. After updating the
oncatenated features, we repeat the elements of each feature vector to recover its original height and weight.
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orrowing the merits of the non-local neural network [44]. Con-
equently, our proposed SDAAL enhances the discriminability of
he trained model to distinguish the foreground and background
or more effective cross-domain person re-identification.

eature recovery. We repeat the element of y∗

i to recover the
ize of each aggregated local body feature according to its orig-
nal size before average pooling. As illustrated in Fig. 4, we add
ach local body feature to the original input feature according to
he corresponding position predicted by the previous body part
eneration, thus the final output feature of our semantic driven
ttention module is composed of the updated local body feature
nd the original background feature.
On the one hand, the intuition behind this strategy is that

he pixels within the same body part are supposed to possess
he similar characteristics. It is reasonable to utilize the average
eature as a representative and only perform affinity calculation
etween average features of all the local body parts. On the
ther hand, since the attention computation only involves the
ocal features of salient body parts of pedestrians, the influence
f cluttered background is decreased, thus strengthening the
eature descriptions when encountering background variations in
nsupervised domain adaptation re-ID.

oss function. As illustrated in Fig. 2, we utilize both the cross-
ntropy loss and the batch-hard triplet loss to pre-train the
DA-based module on the source re-ID dataset with ground truth
6

dentity labels and then fine-tune on the training part of the
arget dataset with pseudo identity labels.

Our total loss function for optimizing the SDA-based module
s the combination of the two losses mentioned above:

SDA = Lcross−entropy + Ltriplet . (5)

During each iteration, we extract the target features by the
re-trained source model and apply the DBSCAN-based clustering
lgorithm [52] to assign pseudo identity labels to the target
mages for further fine-tuning. More experimental details can be
ound in Section 4.2.

.3. Attribute recognition module

Previous researches demonstrate the effectiveness of attribute
earning in person re-ID tasks under an obvious assumption that
mages of the same person tend to share the same semantic
ttributes. Fig. 5 illustrates three images of two different pedes-
rians and the bottom two images belong to the same person.
e notice that in Fig. 5(a) the feature similarities between these

hree images are very close due to the similar appearance with
nly identity labels applied while in Fig. 5(b) the bottom two
mages become closer to each other and far away from the top
ne with more detailed descriptions provided by attribute labels.
nfortunately, the lack of sufficient annotated attribute labels
estricts the application of attribute learning on UDA person re-
D. Therefore, we introduce a novel label refinery mechanism to
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Fig. 5. The three pedestrians are of different identities. Guided with ID and
attribute labels, the bottom two identities are getting closer to each other in
target space while the top one is pushed far away.

Fig. 6. The detailed image dividing strategy. Each pedestrian image is divided
into four parts in height direction according to a fixed ratio.

Table 1
The partitioned attribute groups. We select 32 attributes from the PETA dataset
and divide into four groups according to their associated locations.
Group name Attribute names

Head personalLess30, personalLess45, personalLess60,
personalLarger60, accessoryHat, hairLong, personalMale,
accessorySunglasses

UpperBody carryingBackpack, carryingOther, upperBodyCasual,
upperBodyFormal, upperBodyJacket, carryingNothing,
upperBodyShortSleeve, upperBodyTshirt

LowerBody lowerBodyCasual, lowerBodyFormal, lowerBodyJeans,
lowerBodyShorts, lowerBodyShortSkirt, lowerBodyTrousers,
lowerBodyBrown, lowerBodySuits

Foot footwearLeatherShoes, footwearSandals, footwearShoes,
footwearSneaker, footwearBlack, footwearBrown,
footwearWhite, footwearStocking

dynamically optimize the attribute learning on the target domain
for providing qualified personal attribute information.

We first pre-train a simple convolutional neural network on
he PETA attribute dataset [61] and then apply this network to
redict attribute labels of the target re-ID dataset. PETA dataset is
rganized by 10 publicly available small-scale datasets, including
ore than 60 attributes on 19,000 images of different pedestri-
ns. In order to avoid the attributes which rarely appear in the
arget dataset, we in this paper only select 32 attributes which
re further divided into 4 groups according to their associated
ocations, i.e. head, upperbody, lowerbody and foot. Table 1 lists
he details of partitioned attribute groups. We assume that each
ttribute group is associated with its corresponding local part,
hus each pedestrian image will be divided into 4 parts in a cer-
ain proportion along height direction. Fig. 6 clarifies the detailed
xperimental processing of our approach. We adopt ResNet-50
7

for attribute feature extraction in source pre-training phase and
two non-local attention blocks are embedded into the model to
enhance its ability of concentrating on informative parts during
the fine-tuning phase on the target dataset. Since the size of input
for attribute recognition model has been decreased due to the
image division operation, we directly adopt the original non-local
attention block in this module. We utilize four attribute recogni-
tion models under the same model architecture for learning the
specific attribute feature of each local part.

It is worth noting that Sun et al. [7] adopt a similar strat-
egy by dividing pedestrians into different squares to describe
pedestrian samples for person retrieval. They leverage Refined
Part Pooling (RPP) modules to segment the divided squares into
more tiny pieces for additionally capturing the global relationship
among the unconnected divided squares and thereby improving
the uniform partition. Our proposed SDAAL enjoys more efficient
odel training since it ignores the RPP module refined distribu-

ion measurement, while still achieving competitive performance
ue to the explicitly moduled attention for avoiding the negative
nowledge transferring.

oss function. We use the Binary Cross-Entropy (BCE) loss to
rain the attribute recognition module. We calculate the attribute
oss of each attribute sub-group and then add them together as
he final attribute recognition loss.

.4. Pseudo labels generation

In this section, we detail the pseudo labels generation mech-
nisms for the two feature extraction models, i.e., (1) identity
eature extraction model (Fig. 2(a)) and (2) attribute feature ex-
raction model (Fig. 2(b)), respectively.

• Pseudo labels generation for identity feature extraction model:
In searching the pseudo identity labels, we directly apply the
DBSCAN-based clustering algorithm [52] to identity features
and generate the pseudo labels according to the clustering
results.

• Pseudo labels generation for attribute feature extraction model:
In this experimental setting, we specifically introduce the
pseudo attribute label refinery mechanism in order to en-
hance the reliability of the calculated pseudo labels. Specifi-
cally, we perform the label refinery mechanism to resist the
noisy pseudo attribute labels through borrowing the identity
prediction results from the semantic driven attention mod-
ule. According to the identity features extracted by the SDA
module, we first calculate the feature similarities between
every two images and rank the similarities between other
images for each image. Given an image xi and its nearest
neighbor image xj, if xi is also the nearest neighbor of xj,
we assume that they belong to the same person and denote
xi and xj as a reliable pair. After finding all these reliable
pairs, we select the top p percent of them according to the
feature similarities. In our experiments, we set p = 70
according to the accuracy of identity prediction. Then we
revise the attribute prediction results of the pre-trained at-
tribute recognition model according to the assumption that
images belong to the same person should possess the same
attributes. For each selected reliable pair, we join the second
and third nearest neighbors of each image to form a group.
If the predicted attribute labels of images in the group differ
to each other, we revise the labels of the minority to subject
to the majority. The label refinery mechanism is detailed in
Fig. 7. Finally, we fine-tune the attribute recognition module
with the revised attribute labels.
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Fig. 7. Pseudo attribute label refinery mechanism. We take the attributes of the
head part for an example and the numbers of the table in this figure denote the
predicted labels for the attributes listed in the first row of Table 1. Image x1 is
the nearest neighbor of image x2 and vice versa, we denote them as a reliable
pair. Image x3, x5 are the second nearest neighbors of image x1 and image x2 ,
respectively. Image x4, x6 are the third nearest neighbors of image x1 and x2 .
We compare the predicted attribute labels of the six images mentioned above
and revise the possible wrong labels. Take the first attribute of head part for
an example, since the labels of more than a half images in the group are 1, we
then assign all the images with label 1.

4. Experiments

4.1. Datasets and evaluation metrics

To evaluate the effectiveness of our proposed method, we
conduct experiments on three standard datasets: DukeMTMC-
reID [62], Market-1501 [63] and MSMT17 [26]. The evaluation
statistics are summarized in Table 2 with some samples illus-
trated in Fig. 8. All three datasets are divided into two parts for
training and testing respectively, whenever possible we directly
borrow the experimental settings as reported in the previous
researches [17,26,64] for fair comparison.

DukeMTMC-reID [62] dataset is a subset of the multi-target
multi-camera tracking dataset which contains eight 85-minutes’
high-resolution videos captured from eight different cameras.
This dataset includes 36,411 images of 1,404 pedestrians, which
are further divided into three parts: 16,522 images of 702 pedes-
trians as training set, 17,661 images of 1,110 pedestrians as the
gallery and 2,228 images of 702 pedestrians from the initial
selection of the gallery as the query.

Market-1501 [63] dataset consists 32,668 images from 1,501
pedestrians captured by six different cameras on the campus of
Tsinghua University. All these pedestrian images are automati-
cally detected by the DPM detector. Similar to the division of
the DukeMTMC-reID dataset, we use 751 pedestrians with totally
12,936 images as the training set, 750 pedestrians with totally
19,732 images as the gallery and 3,368 images selected from the
same 750 pedestrians in the gallery as the query.

MSMT17 [26] dataset is the largest re-ID dataset which in-
cludes 126,441 bounding boxes of 4,101 identities from 15 cam-
eras during 4 days. These 15 cameras include 12 outdoor and 3
indoor ones. The whole dataset is divided into 32,621 images of
1,041 identities for training and 93,820 images of 3,060 identi-
ties for testing. To our best knowledge, the MSMT17 dataset is
the most challenging re-ID dataset with large-scale images and
multiple cameras.
8

Table 2
The evaluation setting statistics of three datasets. DukeMTMC-reID, Market-1501
and MSMT17 are abbreviated as Duke, Market and MSMT, respectively.
Benchmark Train ID Test ID Image

Duke 702 702 36,411
Market 751 750 32,668
MSMT 1,041 3,060 126,441

Evaluation protocol. In this work, experimental results are eval-
uated by the standard Cumulative Match Characteristic (CMC)
and mean average precision (mAP). We measure the performance
of our proposed model in terms of Rank-1, Rank-5 and Rank-10
with CMC, where Rank-n indicates the average matching correct
rate among the top-n images with the highest confidence. The
mAP denotes the mean of different hit probabilities. Follow-
ing the settings of state-of-the-art unsupervised re-ID methods,
we evaluate our proposed method on the above three datasets
and under four benchmark protocols, including Market→Duke,
Duke→Market, Market→MSMT and Duke→MSMT.

4.2. Implementation details

In our experiments, all input images are uniformly resized to
256 × 128 and synchronously augmented with random erasing to
ensure each pedestrian with more than 8 images. Then we ran-
domly select 4 identities and sample 8 images for each identity
to form the mini-batch for training. We adopt the ImageNet pre-
trained ResNet-50 as our backbone network and modify conv5_1
to stride 1 instead stride 2 to better adapt the re-ID task. For
our semantic driven attention based module, we insert 4 se-
mantic driven attention block after conv1_1, conv2_2, conv3_3
and conv4_4 respectively during fine-tuning. For our attribute
recognition module, we insert one original non-local attention
block after con3_3 and another one after conv4_4. We train our
SDA-based feature extraction network for 200 epochs with both
the cross-entropy loss and the batch-hard triplet loss and choose
Adam optimizer with an initial learning rate of 10−4 and decay it
y 10 every 50 epochs. As for the attribute recognition module,
e train the network for 150 epochs with binary cross-entropy

oss and choose Adam optimizer with an initial learning rate of
0−3 and decay it by 10 every 50 epochs. For the DBSCAN-based
lustering algorithm applied in identity pseudo labels assignment,
e constrain the minimum size of a cluster to 4 and set density
adius p = 35. Other parameters are kept the same as in [14].
fter a clustering step, we fine-tune the model on the target
ataset with pseudo identity labels for 15 epochs, and iterate this
rocedure for 10 rounds to obtain the final SDA-based model.

.3. Comparison with state-of-the-art methods

We compare our method with multiple unsupervised state-
f-the-art methods using three large-scale datasets including
arket-1501, DukeMTMC-reID and MSMT17 datasets.

.3.1. Performance on DukeMTMC-reID and Market-1501 dataset
Table 3 reports the comparison results on DukeMTMC and

arket-1501 datasets under fully unsupersived setting (FU) and
nsupervised domain adaptation setting (UDA). We test the per-
ormance of seven different FU methods including UMDL [65],
AMEL [66], PUL [67], BUC [64], CrossCamera [55], JVTC [68]
nd HCT [69]. From the results we can see that our proposed
DAAL surpasses most of these FU methods by a large margin via
orrowing the valuable information from labeled source dataset.
or instance, BUC achieves a rank-1 accuracy of 66.2% on the
arket-1501 dataset and 47.4% on the DukeMTMC re-ID dataset,
hich is 16.4% and 25.4% lower than our SDAAL.
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Fig. 8. Some samples in Market-1501, DukeMTMC-reID and MSMT17 datasets.
Table 3
Unsupervised person re-id performance comparison with state-of-the-art meth-
ods on Market-1501 and DukeMTMC-reID datasets. We mark the second-best
results by underline and the best results by bold text.
Methods Reference Market-1501 DukeMTMC-reID

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

UMDL [65] CVPR16 34.5 52.6 59.6 12.4 18.4 31.4 37.6 7.3
CAMEL [66] ICCV17 54.5 – – 26.3 – – – –
PUL [67] TOMM18 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4
BUC [64] AAAI19 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5
CrossCamera [55] TIP20 73.7 84.0 87.9 38.0 56.1 66.7 71.5 30.6
JVTC [68] ECCV20 79.5 89.2 91.9 47.5 74.6 82.9 85.3 50.7
HCT [69] CVPR20 80.0 91.6 95.2 56.4 69.6 83.4 87.4 50.7

PTGAN [26] CVPR18 38.6 – 66.1 – 27.4 – 50.7 –
SPGAN [27] CVPR18 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3
TJ-AIDL [51] CVPR18 58.8 74.8 81.1 26.5 44.3 59.6 65.0 23.0
MMFA [70] BMVC18 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7
ARN [19] CVPR18 70.3 80.4 86.3 39.4 60.2 73.9 79.5 33.4
CamStyle [71] CVPR18 58.8 78.2 85.3 27.4 48.4 62.5 68.9 25.1
HHL [72] ECCV18 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2
ATNet [73] CVPR19 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9
ECN [74] CVPR19 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4
SSG [17] ICCV19 80.0 90.0 92.4 58.3 73.0 80.6 83.2 53.4
DAAM [20] AAAI20 77.8 89.9 93.7 53.1 71.3 82.4 86.3 48.8
IPL [14] PR20 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0
MMCL [75] CVPR20 80.3 89.4 92.3 45.5 65.2 75.9 80.0 40.2
ACT [16] AAAI20 80.5 – – 60.6 72.4 – – 54.5
AE [76] TOMM20 81.6 91.9 94.6 58.0 67.9 79.2 83.6 46.7

SDAAL This paper 82.6 91.7 94.7 56.7 72.8 82.5 86.1 52.3

Table 4
Unsupervised person re-id performance comparison with state-of-the-art meth-
ods on MSMT17 datasets. ‘Market → MSMT’ represents the source domain is
Market-1501 and the target domain is MSMT17. ‘Duke → MSMT’ represents the
source domain is DukeMTMC-reID and the target domain is MSMT17. We mark
the second-best results by underline and the best results by bold text.
Methods Reference Source MSMT17

R-1 R-5 R-10 mAP

PTGAN [26] CVPR18 Market 10.2 – 24.4 2.9
ECN [74] CVPR19 Market 25.3 36.3 42.1 8.5
SSG [17] ICCV19 Market 31.6 – 49.6 13.2
SDAAL This paper Market 40.1 51.5 56.8 17.4
PTGAN [26] CVPR18 Duke 11.8 – 27.4 3.3
ECN [74] CVPR19 Duke 30.2 41.5 46.8 10.2
SSG [17] ICCV19 Duke 32.2 – 51.2 13.3
SDAAL This paper Duke 47.0 58.1 63.7 20.4

To demonstrate the effectiveness of our method, we also eval-
ate the performance of fifteen UDA methods: PTGAN [26], SP-
AN [27], TJ-AIDL [51], MMFA [70], ARN [19], CamStyle [71],
HL [72], ATNet [73], ECN [74], SSG [17], DAAM [20], IPL [14],
MCL [75], ACT [16] and AE [76]. In this setting, when tested on
arket-1501 dataset, DukeMTMC-reID is used as the source and
ice versa. The experimental results report that the performance
f GAN based methods are much lower than pseudo label based
ethods. For example, TJ-AIDL obtains a rank-1 accuracy of 58.8%
hen using DukeMTMC-reID as a source dataset and tested on
arket-1501, exceeding SPGAN by 7.3%. Another pseudo label
ased method SSG exploits both global and local similarities
9

to build clusters, thus achieving a comparative result of 80.0%
on Market-1501 dataset and 73.0% on DukeMTMC-reID dataset.
Specifically, our proposed SDAAL achieves a rank-1 accuracy of
82.6% on the Market-1501 and 72.8% on DukeMTMC-reID, which
mainly thanks to the implement of semantic-based spatial re-
lation within pedestrian features for more reliable clustering.
When compared to TJ-AIDL which also considers attribute infor-
mation, our proposed method outperforms it by 23.8% and 28.5%
respectively on rank-1 accuracy. In addition, although the perfor-
mance of our SDAAL is slightly inferior to SSG on DukeMTMC-
reID dataset, we obtain an improvement of 2.6% on Market-1501
dataset.

4.3.2. Performance on MSMT17 dataset
To further verify the effectiveness of our algorithm, we con-

duct experiments on a larger and more challenging dataset
MSMT17. Following the experimental setting as the state of the
art methods, we take Market-1501 and DukeMTMC-reID datasets
as the source domain respectively and MSMT17 as the target
domain. Considering that MSMT17 is a newly released dataset,
only three unsupervised domain adaptation methods PTGAN, ECN
and SSG are reported in Table 4. From the table we can see that
our proposed SDAAL also achieves comparative performance on
MSMT17, especially for taking DukeMTMC-reID dataset as the
source domain. We achieve 47.0% in rank-1 accuracy and 20.4% in
mAP, exceeding the SSG by 14.8% and 7.1% respectively. Those ex-
perimental results clearly demonstrate the superior performance
of the proposed method.

4.3.3. Comparison with different losses
Table 5 compares the performance of our proposed SDAAL

with different loss function designs on three datasets under the
four benchmark protocols, including Duke→Market, Market→
Duke, Duke→MSMT and Market→MSMT. From the table we can
see that the results exhibit slight fluctuations when combining
the cross-entropy loss with other losses including the triplet
loss [77], sphere loss [78], lifted loss [79], instance loss [80],
contrastive loss [9] and circle loss [81]. Among these losses, the
instance loss provides a proper initialization for ranking loss and
further regularizes the training process, thus achieving the best
results on Rank-1 accuracy. Furthermore, considering the remark-
able contribution of the contrastive loss in verification problem,
we also investigate the performance of adding the contrastive loss
as well as another loss to the cross-entropy loss for improving
the final retrieval results. We notice that increasing the quantity
of different losses properly can lead to better performance. As
visualized in Table 5, the best performance is achieved in us-
ing CE+Constrast+Sphere loss, which generally reaches the best
Rank-1 accuracy and mAP across all transfer tasks.

4.4. Parameters analysis

In this section, we investigate the effect of different values
of the hyper-parameter α which balances the identity similar-
ity and attribute similarity obtained by the SDA-based module
and the ARM respectively. We utilize the original pre-trained



S. Xu, L. Luo, J. Hu et al. Knowledge-Based Systems 252 (2022) 109354

s

s
T
a

o
n
M
l
r
e
t

4

d
i

S
o
e
a

Table 5
Evaluation of different loss functions on cross-domain re-ID tasks with our proposed SDAAL. We
report Rank-1 accuracy (%) and mAp (%) and mark the best results by bold text. ’CE’ represents the
cross-entropy loss.
Loss function Duke to Market Market to Duke Duke to MSMT Market to MSMT

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CE+Triplet 82.6 56.7 72.8 52.3 47.0 20.4 40.1 17.4
CE+Sphere 82.2 56.3 72.4 51.8 46.6 19.9 39.7 17.0
CE+Lifted 81.9 56.7 72.1 52.3 46.2 20.3 39.8 17.4
CE+Instance 82.8 56.8 73.0 52.4 47.2 20.5 40.3 17.6
CE+Contrast 82.5 57.0 72.6 52.6 46.9 20.6 40.0 17.8
CE+Circle 82.6 57.1 72.8 52.7 47.0 20.8 40.1 18.0

CE+Contrast+Triplet 82.7 57.2 72.8 52.8 47.1 20.9 40.2 18.1
CE+Contrast+Circle 82.4 57.2 72.6 52.8 46.8 20.9 40.0 18.1
CE+Contrast+Sphere 82.9 57.3 73.1 52.9 47.3 21.1 40.4 18.2
Fig. 9. Evaluation of different values of parameter α which balances the identity
imilarity and attribute similarity.

ource models to extract identity features and attribute features.
hen we calculate the final accuracy of person re-identification
ccording to the total similarities under different values of α

following (7). Experimental results are shown in Fig. 9, which
analyze the Rank-1 accuracy and mAP. The value of α ranges
from 0.2 to 1.2 and the step size is 0.2. From the results, we
can see that for any value of α ≥ 0, our strategy systematically
improves the results of direct transfer. More specifically, when
α ∈ [0.2, 1.2], the performance is affected only slightly and the
optimal result is obtained when α is set to 0.8. This confirms that
ur approach is insensitive to small variations of α. It is worth
oting that the DPM detector enforced attribute similarity on the
arket-1501 dataset is less reliable than the quality of carefully

abeled attribute similarity on the DukeMTMC-reID dataset. As a
esult, the performance of mAP on the DukeMTMC-reID dataset
xpresses more flat curvature in re-weighting the importance of
he attribute similarity and the identity similarity.

.5. Ablation studies

In this section, comprehensive ablation evaluations are con-
ucted to investigate the contribution of individual components
n our proposed approach.

emantic driven attention module. To demonstrate the superi-
rity of our improved SDA-based module, we adopt three differ-
nt model structures for identity feature extraction: ResNet-50
s the baseline (Res fine-tune), ResNet-50 embedded with the

original non-local attention layers (NL fine-tune) and ResNet-
50 embedded with our proposed SDA module (SDA fine-tune).
Table 6 compares the results on target datasets after fine-tuning.
As the experimental results show, by directly applying the pre-
trained source model to the target dataset, the rank-1 accuracy
10
Table 6
Evaluations of different fine-tuning strategies on two datasets with ResNet-50
baseline. ‘Direct transfer’ means directly applying the pre-trained source model
to the target dataset for inference. ‘Res fine-tune’ means fine-tuning the model
with original ResNet-50 structure. ‘NL fine-tune’ and ‘SDA fine-tune’ add the
original non-local block and the proposed semantic driven attention block to
the ResNet-50 respectively for fine-tuning on the target dataset.
Methods Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

Direct transfer 52.7 24.8 37.1 20.6
Res fine-tune 79.7 50.5 69.3 46.9
NL fine-tune 81.5 54.8 71.4 50.4
SDA fine-tune 81.9 56.1 72.0 51.5

Table 7
Computation and memory statistics comparison between the original non-local
block and our SDA block. We report the GPU memory, training time and
FLOPs when processing an input mini-batch of 32 images. (FLOPS: Floating-point
operations per second.).
Methods Memory (MB) Time (ms) FLOPs (G)

Res fine-tune 6868 87.6 130.24
NL fine-tune 8676 142.3 190.54
SDA fine-tune 6919 97.5 132.42

on two datasets are 52.7% and 37.1% respectively. After fine-
tuning with the original ResNet-50 structure, the rank-1 accu-
racy reaches 79.7% on the Market-1501 dataset and 66.7% on
the DukeMTMC-reID dataset. With the original non-local layers
added, the rank-1 accuracy is improved by 1.8% on the Market-
1501 dataset and 2.1% on the DukeMTMC-reID dataset compared
to the Res fine-tune. Then we measure the accuracy of fine-
tuning with our proposed SDA-module. The results show that our
proposed model structure has a improvement of 2.2% and 2.7% on
the two datasets than the baseline Res fine-tune.

We also compare the computation and memory statistics be-
tween the original non-local block (NL fine-tune) with our pro-
posed semantic driven attention block (SDA fine-tune) in Table 7.
From the table we can see that the GPU memory, training time
and FLOPs are largely reduced by using our proposed SDA block
rather than the original non-local block. As shown in Table 7, our
proposed SDA fine-tune increases limited computational burden
comparing to the baseline setting (Res fine-tune) while signifi-
cantly reducing the computational burden as reported in NL fine-
tune. Therefore, through exploring the merits of the body struc-
ture estimation mechanism, our proposed SDA network can enjoy
comparative performance as well as high training efficiency.

Attribute recognition module. Attributes are utilized to provide
additional information for further confirming whether two im-
ages belong to the same person. In Table 8, the baseline with
direct transfer yields only 52.7% and 37.1% rank-1 accuracy on

the Market-1501 dataset and DukeMTMC re-ID dataset. When
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Fig. 10. Evaluation of re-ID accuracies for two networks.

Table 8
Ablation studies of the proposed framework on two datasets with ResNet-50
baseline. The analysis shows the influences by different components and design
choices on Rank-1 and mAP (%).
Component Design choice

Direct transfer
√ √ √ √

Attribute recognition
√ √ √

Identity fine-tune
√ √

Attribute fine-tune
√

Duke to Market Rank-1 52.7 54.3 81.9 82.6
mAP 24.8 26.8 56.1 56.7

Market to Duke Rank-1 37.1 39.9 72.0 72.8
mAP 20.6 22.7 51.5 52.3

attribute similarities are added to the identity similarities, im-
provements of 2.6% and 2.9% are achieved on these two datasets
respectively. Such improvements show that attribute recogni-
tion plays a certain role in assisting person re-identification.
After several iterations for fine-tuning, the final results achieve
82.6% and 72.8% in rank-1 accuracy on the Market-1501 dataset
and DukeMTMC re-ID dataset respectively, exceeding the results
without the attribute fine-tuning process by 0.7% and 0.8%, which
demonstrate the effectiveness of the label refinery mechanism.

Fine-tuning. Several works demonstrate that fine-tuning is a
owerful strategy in unsupervised domain adaptation tasks. We
ine-tune the SDA-based feature extraction network with the
seudo identity labels. The experimental results show that the
ank-1 accuracy is increased by 29.2% on the Market-1501 dataset
nd 32.7% on the DukeMTMC re-ID dataset. As for the attribute
ecognition module, we also assign pseudo attribute labels ac-
ording to the attribute prediction results. After fine-tuning for
he attributes recognition with the label refinery mechanism, our
inal framework achieves 82.6% rank-1 accuracy on the Market-
501 dataset and 72.8% on the DukeMTMC re-ID dataset. Fig. 10
llustrates the accuracy of two models during the iterations of
ine-tuning process. We can observe from the results that both
wo models perform better as the number of iterations increases,
hich verifies the effectiveness of all the sub-networks in our
roposed method.

.6. Visualization

To further investigate the discriminative ability of the itera-
ive clustering strategy, we randomly select 10 identities with
heir images from the target dataset and extract their feature
mbeddings during iterations. We use t-SNE [82] to visualize
he embeddings by plotting their 2-dimension feature represen-
ations in Fig. 11. Each point represents one image and points
ith the same color indicate pedestrians with the same identity.
rom the visualization results, we can observe that our model

s better than direct transfer after the first stage of iteration.
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Fig. 11. Feature distributions visualized by t-SNE. Fig. 11(a): The model
is trained on Market-1501 and directly transferred to DukeMTMC-reID.
Fig. 11(b)(c)(d): The results of our proposed SDA-based model after fine-tuning
3, 6 and 10 iterations respectively.

By increasing the number of iterations, we observe a clear and
constant gathering of points with the same color, which indicates
that the model has gradually learned more discriminative feature
representations. This visualization demonstrates that our pro-
posed SDAAL effectively strengthen the discriminability of feature
epresentations, thus enforcing the target images with the same
dentity to gather together based on their similarities after some
tage of iterations.

. Conclusion

In this research, we propose a novel Semantic Driven Attention
network with Attribute Learning method (SDAAL) in solving the
existing challenges of traditional UDA-based person re-ID tech-
niques. In order to remedy the varying backgrounds induced
negative transfer, we introduce the body structure estimation
enforced Semantic Driven Attention network, which effectively
reduces the negative impacts caused by the varying backgrounds
as well as enjoys high training efficiency. Additionally, we pro-
pose a novel label refinery mechanism in order to properly opti-
mize the attribute feature learning model for extracting reliable
attribute feature representations, and thus yielding the qualified
UDA re-ID. Extensive experimental results demonstrate that our
proposed framework achieves very competitive re-ID accuracies
to the state-of-the-art approaches. Future work includes hybridiz-
ing the META learning techniques into the paradigm of SDAAL for
searching the best candidate hyper-parameters to accelerate the
global optimization and lift the accuracy simultaneously.
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