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Unsupervised domain adaptation (UDA) person re-identification (re-ID) aims to transfer knowledge
from a labeled source domain to guide the task proposed on the unlabeled target domain, in which
people share different identifications and cross multiple camera views within two different domains.
Consequently, traditional UDA re-ID techniques generally suffer due to the negative transfer caused
by the inevitable noise generated by variant backgrounds, while the foregrounds also lack sufficient
reliable identification knowledge to guarantee the qualified cross-domain re-ID. To remedy the raised
negative transfer caused by variant backgrounds, we propose a novel body structure estimation (BSE)
mechanism enforced semantic driven attention network (SDA), which enables the designed model with
semantic effectiveness to distinguish the foreground and background. In searching for the reliable
feature representations as in the foreground areas, we propose a novel label refinery mechanism
to dynamically optimize the traditional attribute learning techniques for the strengthened personal
attribute features and thus resulting the qualified UDA-re-ID. Extensive experiments demonstrate the
effectiveness of our method in solving unsupervised domain adaptation person re-ID task on three
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large-scale datasets including Market-1501, DukeMTMC-relD and MSMT17.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Person re-identification intends to identify the person of in-
terest across non-overlapping cameras [1]. Due to its remarkable
contributions to video surveillance and criminal investigation,
person re-ID has received enormous research attentions in re-
cent years. Recently, thanks to the impressive development of
deep learning (DL) [2-4], the accuracy of supervised person re-
ID has been significantly lifted via borrowing the merits of the
highly discriminative feature representation enforced deep mod-
els [5-9]. However, these DL-based approaches crucially rely on
sufficient annotated labels which are labor-intensive to obtain,
thus restricting their application in real-world scenarios when
confronting with the newly generated huge quantity data. To
remedy this issue, increasing efforts have been made on the effec-
tive domain adaptation techniques which aim at transferring the
knowledge from the well-labeled source domain to the unlabeled
target domain despite the large distribution divergence among
the sample distributions. For this purpose, unsupervised domain
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adaptation techniques greatly encourage the development of the
cross-domain person re-ID.

Specifically, unsupervised domain adaptation (UDA) person
re-ID boosts the accuracy on a fully unlabeled image dataset
(target domain) by leveraging the knowledge from an existing
labeled image dataset (source domain) through domain adapta-
tion techniques. However, traditional UDA approaches for generic
classification tasks [10-13] implicitly assume that the source
domain and target domain share the same label space, while in
person re-ID tasks the source and target domain are constructed
by different people thus different labels. To solve this issue,
pseudo label based methods [14-18] utilize the discriminative
effectiveness of the source model to assign pseudo labels for
recognizing the unlabeled target domain, which has received
more attentions due to its simple yet effective rationale.

Previous UDA-based person re-ID techniques significantly lift
the performance via simply enjoying the fruits of UDA, i.e., it
explicitly reduces the domain shift to ensure the qualified knowl-
edge transferring across the different domains. However, it still
falls short due to the following two challenges which are visual-
ized in Fig. 1.

e Challenge 1: (Varying backgrounds induced negative
transfer) We argue that existing UDA-based person re-ID
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Fig. 1. Illustration of two challenges solved by our proposed SDAAL. In Fig. 1(a), the top part illustrates an example query image I, with its neighbor images I, I, I3, I4
searched by a baseline model according to feature similarities. The bottom part provides an abstract calculation of the total similarities between each neighbor image
and the query according to their background similarity and foreground similarity. Different quantities of blue and yellow rectangles denote the background and
foreground feature similarity degrees respectively and larger quantity corresponds to higher feature similarity. The multipliers “1” mean the attention scores which
denote how much importance to be attached to the background and foreground similarity. In Fig. 1(b), our proposed Semantic Driven Attention module re-allocates
the importance assigned to the background and foreground similarities for reducing the impact of the background, thus removing the noisy image I4. In Fig. 1(c),
we strengthen the discriminability of the foreground features with the qualified attribute features according to the Attribute Recognition Module, thus decreasing
the foreground similarity degree of the noisy image I, from two yellow rectangles denoted in Fig. 1(b) to one rectangle.

methods fail to distinguish the parts of foreground and back-
ground in the training model. Therefore, as the unavoidable
noise, the varying backgrounds are generally trained during
the model training, which increases the burden for effective
functional learning as well as induces the negative transfer.
Motivated by this, it is beneficial to enable the model to
distinguish the foreground and background, so it can avoid
the brutally forced knowledge transfer among the varying
backgrounds.

o Challenge 2: (Unreliable attribute feature learning caused
indiscriminative feature representation) Due to the lack of
sufficient identification knowledge of the foreground people
in the target domain, the discriminability of the learned
model is reduced significantly. To address this problem,
previous researches further explore the effectiveness of the
attribute learning by searching the newly generated attribute
features. Unfortunately, these methods generally suffered
due to the unreliable attribute features extracted by the fixed
attribute learning model, which is unable to well adapt to the
unlabeled target domain without model fine-tuning.

To remedy the raised challenges, in this paper, we propose a
novel Semantic Driven Attention network with Attribute Learning
(SDAAL). As shown in Fig. 1(a), previous UDA methods fail to
distinguish the background and foreground, thus attaching equal
importance to the two parts of images when training the model.
However, our proposed SDAAL discriminatively learns the fore-
ground/background parts to reduce the negative transfer and
strengthens the attribute learning techniques to enhance the
discriminative feature representation. To remedy Challenge 1, we
first propose the semantic driven attention (SDA) based network,
which can distinguish the foreground and background and re-
weight the importance of the different foreground/background
parts respectively (Fig. 1(b)). It is also interesting to note that,
the proposed SDA is hybridized with the body structure esti-
mation (BSE) mechanism, so our attention model can enjoy the

high-level semantic body part features rather than the low-level
pixel features. As a result, the proposed mechanism reduces the
mentioned negative transfer and achieves the low computational
efficiency simultaneously. To remedy Challenge 2, we introduce
an attribute recognition module (ARM) with a novel label refin-
ery mechanism, which can dynamically optimize the ARM for
strengthening the discriminability of the foreground descriptions
on the target dataset (Fig. 1(c)). Specifically, we semantically di-
vide the image into four sub-images, of which the corresponding
attribute features are extracted to formalize the required personal
attribute. Finally, the fine-tuning of the model is implemented by
the label refinery mechanism.

The main contributions of this paper are summarized as fol-
lows:

e We introduce a novel Semantic Driven Attention network
(SDA) which enables the trained model with semantic view-
sight to distinguish the background and foreground, thus
reducing the potentially existed negative transfer in solving
the UDA-based reID. Moreover, by making use of the BSE
mechanism, SDA enjoys the high-level semantic body part
features as well as achieves high training efficiency.

e We propose a novel label refinery mechanism to improve
the reliability of the attribute features in the foreground
people of the unlabeled target domain. In this mechanism, it
can dynamically optimize the traditional attribute learning
techniques by well adapting the unseen target domain and
extracting the qualified attribute features, thus yielding the
qualified UDA-re-ID.

e Extensive experiments on three large-scale datasets demon-
strate that our proposed method achieves competitive re-
sults in solving unsupervised domain adaptation person re-
ID task.



S. Xu, L. Luo, J. Hu et al.
2. Related works
2.1. Unsupervised domain adaptation approaches

We categorize unsupervised domain adaptation person re-ID
approaches into three branches.

Learning domain-invariant feature based methods [19-22]
intend to narrow the feature distribution discrepancy across the
source and target domain into the common feature space using
some metric measurements, e.g.,, Maximum Mean Discrepancy
(MMD) [23] or Earth Mover's Distance (EMD) [24]. Although these
techniques have achieved significant progresses, they require the
strict consistency of label spaces between the source domain and
target domain. Unfortunately, the pedestrians of the two domains
in UDA re-ID tasks share different identifications, thus falling
short to simply embrace previous experiences to solve the UDA
re-ID tasks.

Style transfer based methods [25-27] transfer source labeled
images to match the style of target unlabeled images by apply-
ing generative adversarial networks (GANs) [28]. CycleGAN [25]
proposes the approach for translating an image from a source
domain to a target domain without paired examples using the
adversarial loss and cycle consistency loss. To further improve the
quality of translation, PTGAN [26] introduces an extra constraint
to preserve the content similarity of images during translation
by leveraging the consistency of the foreground. In addition, SP-
GAN [27] combines the Siamese network with the CycleGAN and
proposes to perform the image translation with the constraints
of two types of unsupervised similarities, i.e., self-similarity and
domain-dissimilarity. However, to the best of our knowledge,
the mentioned style transfer methods generally care about the
global distribution alignment while ignoring to explore the spe-
cific sub-domain discriminability, thus being unable to reduce the
potentially existed negative transfer. Pseudo label based meth-
ods [14-17] typically consists of three main steps: 1. pre-training
the feature extraction model on the labeled source domain; 2.
assigning pseudo labels to the target domain according to the pre-
trained model; and 3. fine-tuning the model on the target domain
with pseudo labels. Generally, the reliability of pseudo labels is
influenced by the domain gap between the source domain and
target domain. To remedy the raised issue, Zheng et al. [29]
propose to evaluate the reliability of pseudo labels by calculating
the inconsistency of two models according to their predictions
and then incorporate the uncertainty of samples to the objective
losses. To avoid introduce extra parameters or modules, Zheng
et al. [30] allow the model to output the semantic segmentation
prediction as well as the uncertainty of the prediction via the
prediction variance in unsupervised semantic segmentation adap-
tation. Inspired by the reliable sample selection methods in unsu-
pervised learning [31,32], several popular person re-identification
researches also propose to exploit how to make the best use of
the target pseudo-labeled candidates through various sampling
strategies. Different from the previous static sampling strategies,
Wu et al. [33] propose a dynamic sampling strategy to increase
the number of the selected pseudo-labeled candidates step by
step for sake of model robustness. In [34], they further utilize
the unselected data whose pseudo labels are not reliable for
jointly fine-tuning the initial CNN model through the exclusive
loss. However, they adopt the Nearest Neighbors (NN) classifier to
define the confidence of label estimation as the distance between
the unlabeled data and its nearest labeled neighbor, while the
rationale is that the labeled and unlabeled data share the same
distribution. Some other researches related to our work attempt
to fully exploit the similarities between unlabeled target samples.
Fu et al. [17] introduce the Self-similarity Grouping (SSG) method
by mining the potential similarity of the global body and local

Knowledge-Based Systems 252 (2022) 109354

parts to build multiple independent clusters. Yang et al. [16]
design an asymmetric co-teaching framework which cooperates
two models to select more reliable samples with pseudo labels for
each other. Through the alternative training of these two models,
the clustering accuracy can be guaranteed with training samples
both clean and miscellaneous.

Despite the remarkable performance achieved by previous
researches, inadequate disentanglement of the varying back-
grounds and the foreground is still an intractable problem to
solve. Our proposed framework explores the contributions of at-
tention mechanism to distinguish the background and foreground
with a semantic view-sight and employs the specifically proposed
attribute learning to further strengthen the foreground feature
descriptions, thus yielding a qualified UDA re-ID.

2.2. Attention mechanism

Inspired by the human perception scheme, attention mecha-
nism has been witnessed superior effectiveness in natural lan-
guage processing [35-37] and computer vision fields [38-40].
Starting from the Transformer [35] proposed by Vaswani et al.,
the effectiveness of the attention mechanism is well explored
to leverage the global knowledge among the input and output
dialogs for improving the machine translation tasks. Lately, Fan
et al. [37] design a novel recurrent attention network to yield the
attention-enhanced spatial context for Visual Dialog. In computer
vision tasks, Dosovitskiy et al. [39] argue that the reliance of
attention on CNN is not necessary and apply a novel Vision
Transformer (ViT) to sequential image patches for further lifting
the performance of image classification tasks. Fan et al. [40] firstly
apply the Transformer for point cloud video modeling and design
the P4 Transformer for spatio-temporal modeling by using the
raw point cloud videos.

In person re-ID, attention mechanism aims to enforce more
attention for identifying the informative foreground areas [41-
43]. Recently, Chen et al. [5] propose a joint spatial-temporal
attention model (STAL) to learn the quality scores of multiple
spatial-temporal units. Wang et al. [44] extend the concept of
self-attention [35] by calculating the interaction between pixel-
pairs to obtain the global pixel-level attention respectively, thus
promoting the development of attention mechanism in person
re-identification. Following this research line, Chen et al. [45] seg-
ment person sequences into multiple snippets and then calculate
the self-attention within each snippet for feature embedding. Liu
et al. [46] apply the non-local attention module to incorporate
video characteristics into the representation and validate the
effectiveness of non-local attention in solving person re-ID tasks.
In [47], Li et al. categorize the attention mechanism into hard
region-level attention as well as the soft pixel-level attention and
combine them to form a unified attention block for the optimized
feature representations. However, the hard regional attention is
learned simply by searching the candidate transformation matrix
without considering the relationship between each regions. In
this research, we explore the effectiveness of non-local attention
as proposed in unsupervised domain adaptation re-ID tasks and
seamlessly embed the body structure estimation into attention
generation to strengthen the discriminability of re-ID model with
semantic power.

2.3. Attribute learning

Attribute learning has received significant attention in per-
son re-identification in terms of its high reputation in providing
additional discriminative effectiveness through the extracted in-
variant property of attributes, e.g., gender or age. Su et al. [48]
propose a three-stage semi-supervised deep attribute learning
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Fig. 2. The overall architecture of our proposed SDAAL, which consists of three key parts: (a) Semantic Driven Attention (SDA) based Module embedded with four
SDA blocks enable the model to re-weight the importance of the background and the foreground, thus obtaining more discriminative identity features efficiently.
(b) Attribute Recognition Module extracts four sub-features to predict four sub-groups of attributes associated with different body parts for strengthening the
discriminability of the foreground. (c) Pseudo Labels Generation introduces the clustering algorithm to generate pseudo identity labels and a label refinery mechanism

to optimize the initial pseudo attribute labels.

algorithm, which achieves promising performance through recog-
nizing a large set of human attributes from a limited number of
labeled attribute data. Similarly, in ACRN [49], the attribute classi-
fier is pre-trained on separate data and then collaborated with the
fine-tuning process of the person re-id model by using identity
labels. Thereafter, Lin et al. [50] provide the attribute labels of
the Market-1501 and DukeMTMC-relD datasets and demonstrate
the effectiveness of multi-task learning in lifting the re-ID accu-
racy. In addition, attribute features also achieve potential abilities
in unsupervised learning. Wang et al. [51] introduce the trans-
ferable joint attribute-identity deep learning (TJ-AIDL) method
for simultaneously learning the attribute-semantic and identity-
discriminative feature representations without any supervised
knowledge in the target domain. However, previous attribute
learning-based approaches generally rely on quite an amount of
labeled attribute data, which is costly and sometimes impossible
to obtain. Therefore, considering the experimental setting of UDA
person re-ID, the proposed attribute learning is unable to be
further optimized on the unlabeled target domain. To approach
the raised issue, in this paper, we propose a novel label refinery
mechanism to strengthen the feature extraction model on the
unlabeled target domain via the dynamic optimizing strategy,
thus ensuring the qualified attribute feature learning.

3. Methodology

To address the negative transfer caused by varying back-
grounds and the insufficient identification knowledge in unsuper-
vised domain adaptation person re-ID tasks, we propose a novel
Semantic-Driven Attention network with Attribute Learning
(SDAAL) framework which jointly unifies the semantic driven
aggregation features with personal attribute information within
the proposed framework. For clarification, the overall network ar-
chitecture of the proposed method is shown in Fig. 2. Specifically,
the proposed SDAAL consists of three key parts: (a) Semantic
Driven Attention based module (SDA), (b) Attribute Recognition
Module (ARM) and (c) Pseudo Labels Generation. In this section,
we first define the problem and give a brief introduction of our
proposed framework in Section 3.1. Then, we detail our proposed

SDA and ARM in Sections 3.2 and 3.3 respectively. Section 3.4
describes the proposed pseudo labels generation mechanisms
based on the aforementioned two feature extraction modules.

3.1. Problem definition and overall framework

Problem definition: In this paper, we intend to solve the
unsupervised domain adaptation person re-identification (UDA
re-ID) task. The research intention is to learn both the iden-
tity and attribute feature extraction models to recognize the
unlabeled target dataset by using the provided source labeled re-
ID dataset and attribute dataset. Specifically, each label in the
attribute dataset is a 4P-dimensional vector which indicates the
attribute labels of four sub-groups and each sub-group contains
P attributes. Meanwhile, one half of the target dataset will serve
as the training part to fine-tune the models and the rest will be
used for testing. Then our objective is that given a specific query
image, following the overall feature similarities generated by the
two feature extraction models, the learned identity and attribute
feature extraction models retrieve all the images belonging to the
same identity as the query image.

Overall process: To leverage the knowledge in the labeled
source domain, the first step is to pre-train the identity feature
extraction model and attribute feature extraction model on the
two source datasets respectively. By using the constraints of the
provided loss functions, we obtain the updated models based on
the source domain. Then we apply the obtained models to the
training part of the target re-ID data to extract identity features
and attribute features as the second step. Lately, we perform
the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) clustering algorithm [52] on the identity features and
assign pseudo identity labels according to the calculated clus-
tering results. For the attribute recognition module, four models
with the same structure are utilized to predict four sub-groups of
attributes labels and we also propose a novel label refinery mech-
anism to optimize the pseudo attribute labels with the guidance
of identity features. Subsequently, we propose to fine-tune the
semantic driven attention based module in order to ensure the
pre-trained model well suits the target dataset.
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Through performing the feature extraction and fine-tuning
iteratively to dynamically optimize the model parameters, we
obtain the final two models to evaluate the performance on the
testing part of the target dataset. For clarification, we denote
the identity features of testing images extracted by SDA-based
module as {fiz,} and the attribute features extracted by ARM as
{fu:} respectively. Then we calculate the total similarity of the
identity features and attribute features between the ith query
image and the jth gallery image as below:

d(i. §) = d(fjons Fen) + @ - d(Fle. S, (1)

o 1 . .
W fae) = 5 D Ayare: ) (2)

part

where d(-) can be determined by the dot product of the two
feature vectors, {fpm} denotes attribute features of different body
parts and part € {head, upper, lower, foot}. « is the parameter
to balance the contributions of the proposed two losses. The
determination of « will be discussed in Section 4.4.

For each query image, we rank the feature similarities be-
tween this image with all gallery images and calculate the re-
identification accuracy of our model according to the ranking
results. For more clarification of the evaluation protocol, readers
are suggested to refer our Section 4.1.

3.2. Semantic driven attention based module

In order to strengthen identity feature descriptions for the
unsupervised domain adaptation person re-ID task, we equip the
backbone ResNet-50 with semantic driven attention modules.
Thus the trained model with semantic view-sight can distinguish
the background and foreground and dynamically re-weight the
importance of different body parts by hybridizing the body struc-
ture estimation mechanism. In this section, we first revisit the
original non-local attention block and then illustrate the details
of our proposed semantic driven attention block.

3.2.1. Revisit non-local attention block

The basic non-local attention block aims at aggregating infor-
mation from all positions via a pixel-level attention map. Fig. 3(a)
illustrates the whole process of the original non-local attention
block. We denote X € R*N as the feature map of the input,
where C is the dimension of features and N is the number of
positions in the feature map (e.g. N = H x W for images, N =
H x W x T for videos). Given an input feature x; € R¢ sampled
from X, the corresponding output z; of non-local operation can be
expressed as:

N ot 9(x))

L=X+W,) ———
2 e

(W, - x;), (3)

where C(x)= 3 e’ ¢%) is 3 normalization factor, i is the index
of a given query position and j enumerates all positions in the
feature map. W, and W, are all transform matrices which are
implemented as, e.g, 1 x 1 x 1 convolutions. The number of
channels represented by W, is set to be half of the number of
channels in x;, which reduces approximate 50% computation effi-
ciency via comparing with the non-local attention block enforced
version. Then the weight matrix W, projects the aggregated fea-
ture to the original dimensional embedding space from RC/(C/ =
%) to RS, thus matching the number of channels with the given
input feature Xx;.

As for the pairwise function e”®) %) which calculates the re-
lationship between position i and j, Wang et al. [44] propose four
instantiations to meet various needs in practical applications, i.e.,
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Gaussian, Embedded Gaussian, Dot product and Concatenation:
(1) Gaussian function is defined as e"iT"i, where xiij is dot-product
similarity. (2) Embedded Gaussian is a simple extension of Gaus-
sian and defined as e™®) #%), where 0(x;) = Wyx; and ¢(x;) =
WyX; are two embeddings. (3) Dot product is defined as a dot-
product similarity 9(x,-)T¢>(xj). (4) Concatenation is defined as
ReLU(wf [6(xi), ¢(x;)]), where wy is a weight vector that projects
the concatenated vector to a scalar. In this paper, we adopt the
most widely-used instantiation, Embedded Gaussian.

3.2.2. Semantic driven attention block

As we introduced in Section 3.2.1, the original non-local op-
eration requires heavy computation and memory cost due to the
O(N?) complexity of dense affinity calculation between features
of all positions. Directly embedding the non-local attention mod-
ule into the backbone for feature extraction increases the training
difficulty, thus preventing the potential benefit from practical
application. We consider a better trade-off between computation
complexity and performance and introduce a semantic driven
attention block by exploring the spatial redundancy with a body
structure estimation mechanism. Fortunately, our proposed SDA
enjoys comparative performance as well as high training effi-
ciency. Compared to the original non-local attention block, we
introduce two additional components which are elaborated as
follows:

Local body parts feature concatenation. We first pre-train a
human pose estimation network [53] with the MPIIl human pose
dataset [54] and then apply this network to our re-ID images
to predict 14 joints of pedestrians for generating 6 salient body
parts, which correspond to head, torso, right arm, left arm, right
leg and left leg as illustrated in Fig. 4(a). We extract corresponding
local features of all the body parts according to their positions
from the input feature of the semantic driven attention module.
After applying average pooling to each local feature, we obtain six
feature vectors and concatenate them for the subsequent softmax
attention calculation. In Fig. 4(a), the original input feature map
X e RE&H*W s replaced by X* € RM (M = 6). It is worth
noting that HW is always much larger than M, thus naturally
reducing the computation cost from O(H?*W?) to O(M?). We then
perform the non-local operation on X*, given an input feature
X; € R¢ sampled from X, the intermediate output y; before
feature recovery operation can be expressed as:

M 9T 60)

W(Wv 'Xf)’ (4)
where y; denotes the sum information aggregated from all body
features for each x!. The ‘Softmax attention aggregation’ and
‘1 x 1 x 1’ convolution betvx;een Fig. 4(a) and Fig. 4(b) are
o(xF xF

implemented by the Zj"i] %(Wv . xj) and W, in Eq. (4)
respectively.

Note: To enrich the information of feature representations,
many researchers propose to consider the similarity between part
features for assisting the similarity measurement between the
global features. One direct idea is to divide the feature map into
equal horizontal stripes [7,55-58]. However, the uniform parti-
tion ignores to handle the semantic misalignment caused by the
variations of poses within different images. To remedy this issue,
the popular methods [5,59,60] take advantage of off-the-shelf
pose estimation models to ensure the divided body part with pose
estimation awareness, thus potentially enforcing the semantic
effectiveness enhanced body part methods. Our work belongs to
the latter branch but goes one step further in providing a global
view-sight to see the relationships among different body parts via
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Fig. 4. Details of the local body parts feature concatenation layer and feature recovery layer in our proposed SDA module. We first extract the corresponding features
of six salient body parts (head, right arm, left arm, torsor, right leg and left leg) from the input feature of the SDA according to the 14 joints predicted by the human
pose estimation network. Then we apply average pooling to these six features and concatenate them for further softmax attention calculation. After updating the
concatenated features, we repeat the elements of each feature vector to recover its original height and weight.

borrowing the merits of the non-local neural network [44]. Con-
sequently, our proposed SDAAL enhances the discriminability of
the trained model to distinguish the foreground and background
for more effective cross-domain person re-identification.

Feature recovery. We repeat the element of y; to recover the
size of each aggregated local body feature according to its orig-
inal size before average pooling. As illustrated in Fig. 4, we add
each local body feature to the original input feature according to
the corresponding position predicted by the previous body part
generation, thus the final output feature of our semantic driven
attention module is composed of the updated local body feature
and the original background feature.

On the one hand, the intuition behind this strategy is that
the pixels within the same body part are supposed to possess
the similar characteristics. It is reasonable to utilize the average
feature as a representative and only perform affinity calculation
between average features of all the local body parts. On the
other hand, since the attention computation only involves the
local features of salient body parts of pedestrians, the influence
of cluttered background is decreased, thus strengthening the
feature descriptions when encountering background variations in
unsupervised domain adaptation re-ID.

Loss function. As illustrated in Fig. 2, we utilize both the cross-
entropy loss and the batch-hard triplet loss to pre-train the
SDA-based module on the source re-ID dataset with ground truth

identity labels and then fine-tune on the training part of the
target dataset with pseudo identity labels.

Our total loss function for optimizing the SDA-based module
is the combination of the two losses mentioned above:

LSDA = Lcross—entropy + Lm’plet- (5)

During each iteration, we extract the target features by the
pre-trained source model and apply the DBSCAN-based clustering
algorithm [52] to assign pseudo identity labels to the target
images for further fine-tuning. More experimental details can be
found in Section 4.2.

3.3. Attribute recognition module

Previous researches demonstrate the effectiveness of attribute
learning in person re-ID tasks under an obvious assumption that
images of the same person tend to share the same semantic
attributes. Fig. 5 illustrates three images of two different pedes-
trians and the bottom two images belong to the same person.
We notice that in Fig. 5(a) the feature similarities between these
three images are very close due to the similar appearance with
only identity labels applied while in Fig. 5(b) the bottom two
images become closer to each other and far away from the top
one with more detailed descriptions provided by attribute labels.
Unfortunately, the lack of sufficient annotated attribute labels
restricts the application of attribute learning on UDA person re-
ID. Therefore, we introduce a novel label refinery mechanism to



S. Xu, L. Luo, J. Hu et al.

personalLess30
upperBodyCasual
carryingBackpack
upperBodyTshirt
lowerbodyCasual
lowerBodyShorts
footwearWhite
) )

personalLess30
personMale
upperBodyCasual
carryingNothing
upperBody T'shirt
lowerbodyCasual
lowerBodyShorts
footwearBlack

(a) Identity similarities (b) Identity similarities + Attribute similarities

Fig. 5. The three pedestrians are of different identities. Guided with ID and

attribute labels, the bottom two identities are getting closer to each other in
target space while the top one is pushed far away.
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Fig. 6. The detailed image dividing strategy. Each pedestrian image is divided
into four parts in height direction according to a fixed ratio.

Table 1
The partitioned attribute groups. We select 32 attributes from the PETA dataset
and divide into four groups according to their associated locations.

Group name Attribute names

Head personalLess30, personalLess45, personalLess60,
personalLarger60, accessoryHat, hairLong, personalMale,
accessorySunglasses

UpperBody carryingBackpack, carryingOther, upperBodyCasual,
upperBodyFormal, upperBody]Jacket, carryingNothing,
upperBodyShortSleeve, upperBodyTshirt

LowerBody lowerBodyCasual, lowerBodyFormal, lowerBody]eans,
lowerBodyShorts, lowerBodyShortSkirt, lowerBodyTrousers,
lowerBodyBrown, lowerBodySuits

Foot footwearLeatherShoes, footwearSandals, footwearShoes,

footwearSneaker, footwearBlack, footwearBrown,
footwearWhite, footwearStocking

dynamically optimize the attribute learning on the target domain
for providing qualified personal attribute information.

We first pre-train a simple convolutional neural network on
the PETA attribute dataset [61] and then apply this network to
predict attribute labels of the target re-ID dataset. PETA dataset is
organized by 10 publicly available small-scale datasets, including
more than 60 attributes on 19,000 images of different pedestri-
ans. In order to avoid the attributes which rarely appear in the
target dataset, we in this paper only select 32 attributes which
are further divided into 4 groups according to their associated
locations, i.e. head, upperbody, lowerbody and foot. Table 1 lists
the details of partitioned attribute groups. We assume that each
attribute group is associated with its corresponding local part,
thus each pedestrian image will be divided into 4 parts in a cer-
tain proportion along height direction. Fig. 6 clarifies the detailed
experimental processing of our approach. We adopt ResNet-50
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for attribute feature extraction in source pre-training phase and
two non-local attention blocks are embedded into the model to
enhance its ability of concentrating on informative parts during
the fine-tuning phase on the target dataset. Since the size of input
for attribute recognition model has been decreased due to the
image division operation, we directly adopt the original non-local
attention block in this module. We utilize four attribute recogni-
tion models under the same model architecture for learning the
specific attribute feature of each local part.

It is worth noting that Sun et al. [7] adopt a similar strat-
egy by dividing pedestrians into different squares to describe
pedestrian samples for person retrieval. They leverage Refined
Part Pooling (RPP) modules to segment the divided squares into
more tiny pieces for additionally capturing the global relationship
among the unconnected divided squares and thereby improving
the uniform partition. Our proposed SDAAL enjoys more efficient
model training since it ignores the RPP module refined distribu-
tion measurement, while still achieving competitive performance
due to the explicitly moduled attention for avoiding the negative
knowledge transferring.

Loss function. We use the Binary Cross-Entropy (BCE) loss to
train the attribute recognition module. We calculate the attribute
loss of each attribute sub-group and then add them together as
the final attribute recognition loss.

3.4. Pseudo labels generation

In this section, we detail the pseudo labels generation mech-
anisms for the two feature extraction models, ie., (1) identity
feature extraction model (Fig. 2(a)) and (2) attribute feature ex-
traction model (Fig. 2(b)), respectively.

e Pseudo labels generation for identity feature extraction model:
In searching the pseudo identity labels, we directly apply the
DBSCAN-based clustering algorithm [52] to identity features
and generate the pseudo labels according to the clustering
results.

e Pseudo labels generation for attribute feature extraction model:
In this experimental setting, we specifically introduce the
pseudo attribute label refinery mechanism in order to en-
hance the reliability of the calculated pseudo labels. Specifi-
cally, we perform the label refinery mechanism to resist the
noisy pseudo attribute labels through borrowing the identity
prediction results from the semantic driven attention mod-
ule. According to the identity features extracted by the SDA
module, we first calculate the feature similarities between
every two images and rank the similarities between other
images for each image. Given an image x; and its nearest
neighbor image x;, if x; is also the nearest neighbor of x;,
we assume that they belong to the same person and denote
X; and x; as a reliable pair. After finding all these reliable
pairs, we select the top p percent of them according to the
feature similarities. In our experiments, we set p = 70
according to the accuracy of identity prediction. Then we
revise the attribute prediction results of the pre-trained at-
tribute recognition model according to the assumption that
images belong to the same person should possess the same
attributes. For each selected reliable pair, we join the second
and third nearest neighbors of each image to form a group.
If the predicted attribute labels of images in the group differ
to each other, we revise the labels of the minority to subject
to the majority. The label refinery mechanism is detailed in
Fig. 7. Finally, we fine-tune the attribute recognition module
with the revised attribute labels.
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images Predicted attribute labels of head part
X1 1 0 0 0 0 o 0 0
X2 |0~ 0 0 0 0 1 “ o ©
X3 1 0 0 0 0 1 0 0
X4 1 0 0 0 0 1 0 0
X5 1 0 0 0 0 1 0 0
X6 | O~ 0 0 0 0 81 0 0

Fig. 7. Pseudo attribute label refinery mechanism. We take the attributes of the
head part for an example and the numbers of the table in this figure denote the
predicted labels for the attributes listed in the first row of Table 1. Image x; is
the nearest neighbor of image x, and vice versa, we denote them as a reliable
pair. Image x3, x5 are the second nearest neighbors of image x; and image x,,
respectively. Image x4, Xs are the third nearest neighbors of image x; and x;.
We compare the predicted attribute labels of the six images mentioned above
and revise the possible wrong labels. Take the first attribute of head part for
an example, since the labels of more than a half images in the group are 1, we
then assign all the images with label 1.

4. Experiments
4.1. Datasets and evaluation metrics

To evaluate the effectiveness of our proposed method, we
conduct experiments on three standard datasets: DukeMTMC-
relD [62], Market-1501 [63] and MSMT17 [26]. The evaluation
statistics are summarized in Table 2 with some samples illus-
trated in Fig. 8. All three datasets are divided into two parts for
training and testing respectively, whenever possible we directly
borrow the experimental settings as reported in the previous
researches [17,26,64] for fair comparison.

DukeMTMC-relID [62] dataset is a subset of the multi-target
multi-camera tracking dataset which contains eight 85-minutes’
high-resolution videos captured from eight different cameras.
This dataset includes 36,411 images of 1,404 pedestrians, which
are further divided into three parts: 16,522 images of 702 pedes-
trians as training set, 17,661 images of 1,110 pedestrians as the
gallery and 2,228 images of 702 pedestrians from the initial
selection of the gallery as the query.

Market-1501 [63] dataset consists 32,668 images from 1,501
pedestrians captured by six different cameras on the campus of
Tsinghua University. All these pedestrian images are automati-
cally detected by the DPM detector. Similar to the division of
the DukeMTMC-relD dataset, we use 751 pedestrians with totally
12,936 images as the training set, 750 pedestrians with totally
19,732 images as the gallery and 3,368 images selected from the
same 750 pedestrians in the gallery as the query.

MSMT17 [26] dataset is the largest re-ID dataset which in-
cludes 126,441 bounding boxes of 4,101 identities from 15 cam-
eras during 4 days. These 15 cameras include 12 outdoor and 3
indoor ones. The whole dataset is divided into 32,621 images of
1,041 identities for training and 93,820 images of 3,060 identi-
ties for testing. To our best knowledge, the MSMT17 dataset is
the most challenging re-ID dataset with large-scale images and
multiple cameras.
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Table 2
The evaluation setting statistics of three datasets. DukeMTMC-relD, Market-1501
and MSMT17 are abbreviated as Duke, Market and MSMT, respectively.

Benchmark Train ID Test ID Image
Duke 702 702 36,411
Market 751 750 32,668
MSMT 1,041 3,060 126,441

Evaluation protocol. In this work, experimental results are eval-
uated by the standard Cumulative Match Characteristic (CMC)
and mean average precision (mAP). We measure the performance
of our proposed model in terms of Rank-1, Rank-5 and Rank-10
with CMC, where Rank-n indicates the average matching correct
rate among the top-n images with the highest confidence. The
mAP denotes the mean of different hit probabilities. Follow-
ing the settings of state-of-the-art unsupervised re-ID methods,
we evaluate our proposed method on the above three datasets
and under four benchmark protocols, including Market— Duke,
Duke— Market, Market—MSMT and Duke— MSMT.

4.2. Implementation details

In our experiments, all input images are uniformly resized to
256 x 128 and synchronously augmented with random erasing to
ensure each pedestrian with more than 8 images. Then we ran-
domly select 4 identities and sample 8 images for each identity
to form the mini-batch for training. We adopt the ImageNet pre-
trained ResNet-50 as our backbone network and modify conv5_1
to stride 1 instead stride 2 to better adapt the re-ID task. For
our semantic driven attention based module, we insert 4 se-
mantic driven attention block after convi_1, conv2_2, conv3_3
and conv4_4 respectively during fine-tuning. For our attribute
recognition module, we insert one original non-local attention
block after con3_3 and another one after conv4_4. We train our
SDA-based feature extraction network for 200 epochs with both
the cross-entropy loss and the batch-hard triplet loss and choose
Adam optimizer with an initial learning rate of 10~* and decay it
by 10 every 50 epochs. As for the attribute recognition module,
we train the network for 150 epochs with binary cross-entropy
loss and choose Adam optimizer with an initial learning rate of
102 and decay it by 10 every 50 epochs. For the DBSCAN-based
clustering algorithm applied in identity pseudo labels assignment,
we constrain the minimum size of a cluster to 4 and set density
radius p = 35. Other parameters are kept the same as in [14].
After a clustering step, we fine-tune the model on the target
dataset with pseudo identity labels for 15 epochs, and iterate this
procedure for 10 rounds to obtain the final SDA-based model.

4.3. Comparison with state-of-the-art methods

We compare our method with multiple unsupervised state-
of-the-art methods using three large-scale datasets including
Market-1501, DukeMTMC-reID and MSMT17 datasets.

4.3.1. Performance on DukeMTMC-relD and Market-1501 dataset

Table 3 reports the comparison results on DukeMTMC and
Market-1501 datasets under fully unsupersived setting (FU) and
unsupervised domain adaptation setting (UDA). We test the per-
formance of seven different FU methods including UMDL [65],
CAMEL [66], PUL [67], BUC [64], CrossCamera [55], JVTC [68]
and HCT [69]. From the results we can see that our proposed
SDAAL surpasses most of these FU methods by a large margin via
borrowing the valuable information from labeled source dataset.
For instance, BUC achieves a rank-1 accuracy of 66.2% on the
Market-1501 dataset and 47.4% on the DukeMTMC re-ID dataset,
which is 16.4% and 25.4% lower than our SDAAL.
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Fig. 8. Some samples in Market-1501, DukeMTMC-reID and MSMT17 datasets.

Table 3

Unsupervised person re-id performance comparison with state-of-the-art meth-
ods on Market-1501 and DukeMTMC-reID datasets. We mark the second-best
results by underline and the best results by bold text.

Methods Reference Market-1501 DukeMTMC-relD

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP
UMDL [65] CVPR16 345 526 596 124 184 314 376 7.3
CAMEL [66] ICCV17 545 - - 263 - - - -
PUL [67] TOMM18 45.5 60.7 66.7 20.5 30.0 43.4 485 16.4
BUC [64] AAAI19 66.2 79.6 845 38.3 474 62.6 684 275

CrossCamera [55] TIP20 73.7 84.0 87.9 38.0 56.1 66.7 71.5 30.6

JVTC [68] ECCV20 795 89.2 919 475 746 829 853 507
HCT [69] CVPR20 80.0 91.6 952 564 69.6 83.4 874 507
PTGAN [26] CVPR18 386 - 66.1 - 274 - 50.7 -
SPGAN [27] CVPR18 515 70.1 76.8 22.8 41.1 56.6 63.0 223
TJ-AIDL [51] CVPR18 58.8 74.8 81.1 26.5 44.3 59.6 65.0 23.0
MMFA [70] BMVC18 56.7 75.0 81.8 27.4 453 59.8 66.3 24.7
ARN [19] CVPR18 70.3 80.4 86.3 394 602 739 795 334
CamStyle [71] CVPR18 58.8 78.2 85.3 274 484 625 689 25.1
HHL [72] ECCV18 62.2 78.8 84.0 314 469 61.0 66.7 27.2
ATNet [73] CVPR19 55.7 732 794 25.6 45.1 59.5 642 249
ECN [74] CVPR19 75.1 87.6 91.6 43.0 63.3 75.8 804 404
SSG [17] ICCV19 80.0 90.0 924 58.3 73.0 80.6 83.2 534
DAAM [20] AAAI20 77.8 89.9 937 53.1 713 824 86.3 4838
IPL [14] PR20 75.8 89.5 932 53.7 68.4 80.1 835 49.0
MMCL [75] CVPR20 80.3 89.4 923 455 652 75.9 80.0 40.2
ACT [16] AAAI20 805 - - 606 724 - - 54.5
AE [76] TOMM20 81.6 919 94.6 58.0 67.9 79.2 83.6 46.7
SDAAL This paper 82.6 91.7 94.7 56.7 72.8 82.5 86.1 523
Table 4

Unsupervised person re-id performance comparison with state-of-the-art meth-
ods on MSMT17 datasets. ‘Market — MSMT represents the source domain is
Market-1501 and the target domain is MSMT17. ‘Duke — MSMT’ represents the
source domain is DukeMTMC-reID and the target domain is MSMT17. We mark
the second-best results by underline and the best results by bold text.

Methods Reference Source MSMT17

R-1 R-5 R-10 mAP
PTGAN [26] CVPR18 Market 10.2 - 244 29
ECN [74] CVPR19 Market 253 36.3 421 8.5
SSG [17] ICCV19 Market 31.6 - 49.6 13.2
SDAAL This paper Market 40.1 51.5 56.8 174
PTGAN [26] CVPR18 Duke 11.8 - 27.4 33
ECN [74] CVPR19 Duke 30.2 415 46.8 10.2
SSG [17] ICCV19 Duke 322 - 51.2 13.3
SDAAL This paper Duke 47.0 58.1 63.7 204

To demonstrate the effectiveness of our method, we also eval-
uate the performance of fifteen UDA methods: PTGAN [26], SP-
GAN [27], TJ-AIDL [51], MMFA [70], ARN [19], CamStyle [71],
HHL [72], ATNet [73], ECN [74], SSG [17], DAAM [20], IPL [14],
MMCL [75], ACT [16] and AE [76]. In this setting, when tested on
Market-1501 dataset, DukeMTMC-relD is used as the source and
vice versa. The experimental results report that the performance
of GAN based methods are much lower than pseudo label based
methods. For example, TJ-AIDL obtains a rank-1 accuracy of 58.8%
when using DukeMTMC-relD as a source dataset and tested on
Market-1501, exceeding SPGAN by 7.3%. Another pseudo label
based method SSG exploits both global and local similarities

to build clusters, thus achieving a comparative result of 80.0%
on Market-1501 dataset and 73.0% on DukeMTMC-relID dataset.
Specifically, our proposed SDAAL achieves a rank-1 accuracy of
82.6% on the Market-1501 and 72.8% on DukeMTMC-relD, which
mainly thanks to the implement of semantic-based spatial re-
lation within pedestrian features for more reliable clustering.
When compared to TJ-AIDL which also considers attribute infor-
mation, our proposed method outperforms it by 23.8% and 28.5%
respectively on rank-1 accuracy. In addition, although the perfor-
mance of our SDAAL is slightly inferior to SSG on DukeMTMC-
relD dataset, we obtain an improvement of 2.6% on Market-1501
dataset.

4.3.2. Performance on MSMT17 dataset

To further verify the effectiveness of our algorithm, we con-
duct experiments on a larger and more challenging dataset
MSMT17. Following the experimental setting as the state of the
art methods, we take Market-1501 and DukeMTMC-relD datasets
as the source domain respectively and MSMT17 as the target
domain. Considering that MSMT17 is a newly released dataset,
only three unsupervised domain adaptation methods PTGAN, ECN
and SSG are reported in Table 4. From the table we can see that
our proposed SDAAL also achieves comparative performance on
MSMT17, especially for taking DukeMTMC-relD dataset as the
source domain. We achieve 47.0% in rank-1 accuracy and 20.4% in
mAP, exceeding the SSG by 14.8% and 7.1% respectively. Those ex-
perimental results clearly demonstrate the superior performance
of the proposed method.

4.3.3. Comparison with different losses

Table 5 compares the performance of our proposed SDAAL
with different loss function designs on three datasets under the
four benchmark protocols, including Duke— Market, Market—
Duke, Duke—MSMT and Market—MSMT. From the table we can
see that the results exhibit slight fluctuations when combining
the cross-entropy loss with other losses including the triplet
loss [77], sphere loss [78], lifted loss [79], instance loss [80],
contrastive loss [9] and circle loss [81]. Among these losses, the
instance loss provides a proper initialization for ranking loss and
further regularizes the training process, thus achieving the best
results on Rank-1 accuracy. Furthermore, considering the remark-
able contribution of the contrastive loss in verification problem,
we also investigate the performance of adding the contrastive loss
as well as another loss to the cross-entropy loss for improving
the final retrieval results. We notice that increasing the quantity
of different losses properly can lead to better performance. As
visualized in Table 5, the best performance is achieved in us-
ing CE+Constrast+Sphere loss, which generally reaches the best
Rank-1 accuracy and mAP across all transfer tasks.

4.4. Parameters analysis

In this section, we investigate the effect of different values
of the hyper-parameter o which balances the identity similar-
ity and attribute similarity obtained by the SDA-based module
and the ARM respectively. We utilize the original pre-trained
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Evaluation of different loss functions on cross-domain re-ID tasks with our proposed SDAAL. We
report Rank-1 accuracy (%) and mAp (%) and mark the best results by bold text. 'CE’ represents the

cross-entropy loss.

Loss function Duke to Market

Market to Duke

Duke to MSMT  Market to MSMT

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
CE+Triplet 82.6 56.7 72.8 523 47.0 20.4 40.1 17.4
CE+Sphere 82.2 56.3 724 51.8 46.6 19.9 39.7 17.0
CE+Lifted 81.9 56.7 721 52.3 46.2 20.3 39.8 17.4
CE+Instance 82.8 56.8 73.0 524 47.2 20.5 40.3 17.6
CE+Contrast 82.5 57.0 72.6 52.6 46.9 20.6 40.0 17.8
CE+Circle 82.6 57.1 72.8 52.7 47.0 20.8 40.1 18.0
CE+Contrast+Triplet 82.7 57.2 72.8 52.8 471 20.9 40.2 18.1
CE+Contrast+Circle 824  57.2 72.6 52.8 46.8 20.9 40.0 18.1
CE+Contrast+Sphere 82.9 57.3 731 52.9 473 21.1 404 182
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Fig. 9. Evaluation of different values of parameter « which balances the identity
similarity and attribute similarity.

source models to extract identity features and attribute features.
Then we calculate the final accuracy of person re-identification
according to the total similarities under different values of «
following (7). Experimental results are shown in Fig. 9, which
analyze the Rank-1 accuracy and mAP. The value of o ranges
from 0.2 to 1.2 and the step size is 0.2. From the results, we
can see that for any value of @ > 0, our strategy systematically
improves the results of direct transfer. More specifically, when
a € [0.2, 1.2], the performance is affected only slightly and the
optimal result is obtained when « is set to 0.8. This confirms that
our approach is insensitive to small variations of «. It is worth
noting that the DPM detector enforced attribute similarity on the
Market-1501 dataset is less reliable than the quality of carefully
labeled attribute similarity on the DukeMTMC-relD dataset. As a
result, the performance of mAP on the DukeMTMC-reID dataset
expresses more flat curvature in re-weighting the importance of
the attribute similarity and the identity similarity.

4.5. Ablation studies

In this section, comprehensive ablation evaluations are con-
ducted to investigate the contribution of individual components
in our proposed approach.

Semantic driven attention module. To demonstrate the superi-
ority of our improved SDA-based module, we adopt three differ-
ent model structures for identity feature extraction: ResNet-50
as the baseline (Res fine-tune), ResNet-50 embedded with the
original non-local attention layers (NL fine-tune) and ResNet-
50 embedded with our proposed SDA module (SDA fine-tune).
Table 6 compares the results on target datasets after fine-tuning.
As the experimental results show, by directly applying the pre-
trained source model to the target dataset, the rank-1 accuracy

Table 6

Evaluations of different fine-tuning strategies on two datasets with ResNet-50
baseline. ‘Direct transfer’ means directly applying the pre-trained source model
to the target dataset for inference. ‘Res fine-tune’ means fine-tuning the model
with original ResNet-50 structure. ‘NL fine-tune’ and ‘SDA fine-tune’ add the
original non-local block and the proposed semantic driven attention block to
the ResNet-50 respectively for fine-tuning on the target dataset.

Methods Market-1501 DukeMTMC-relD
Rank-1 mAP Rank-1 mAP
Direct transfer 52.7 24.8 371 20.6
Res fine-tune 79.7 50.5 69.3 46.9
NL fine-tune 815 54.8 714 50.4
SDA fine-tune 81.9 56.1 72.0 51.5

Table 7

Computation and memory statistics comparison between the original non-local
block and our SDA block. We report the GPU memory, training time and
FLOPs when processing an input mini-batch of 32 images. (FLOPS: Floating-point
operations per second.).

Methods Memory (MB) Time (ms) FLOPs (G)
Res fine-tune 6868 87.6 130.24
NL fine-tune 8676 142.3 190.54
SDA fine-tune 6919 975 132.42

on two datasets are 52.7% and 37.1% respectively. After fine-
tuning with the original ResNet-50 structure, the rank-1 accu-
racy reaches 79.7% on the Market-1501 dataset and 66.7% on
the DukeMTMC-relD dataset. With the original non-local layers
added, the rank-1 accuracy is improved by 1.8% on the Market-
1501 dataset and 2.1% on the DukeMTMC-relD dataset compared
to the Res fine-tune. Then we measure the accuracy of fine-
tuning with our proposed SDA-module. The results show that our
proposed model structure has a improvement of 2.2% and 2.7% on
the two datasets than the baseline Res fine-tune.

We also compare the computation and memory statistics be-
tween the original non-local block (NL fine-tune) with our pro-
posed semantic driven attention block (SDA fine-tune) in Table 7.
From the table we can see that the GPU memory, training time
and FLOPs are largely reduced by using our proposed SDA block
rather than the original non-local block. As shown in Table 7, our
proposed SDA fine-tune increases limited computational burden
comparing to the baseline setting (Res fine-tune) while signifi-
cantly reducing the computational burden as reported in NL fine-
tune. Therefore, through exploring the merits of the body struc-
ture estimation mechanism, our proposed SDA network can enjoy
comparative performance as well as high training efficiency.

Attribute recognition module. Attributes are utilized to provide
additional information for further confirming whether two im-
ages belong to the same person. In Table 8, the baseline with
direct transfer yields only 52.7% and 37.1% rank-1 accuracy on
the Market-1501 dataset and DukeMTMC re-ID dataset. When

10
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Fig. 10. Evaluation of re-ID accuracies for two networks.
Table 8

Ablation studies of the proposed framework on two datasets with ResNet-50
baseline. The analysis shows the influences by different components and design
choices on Rank-1 and mAP (%).

Component Design choice
Direct transfer v Vv 4 V4
Attribute recognition Vv Vv N
Identity fine-tune J Vv
Attribute fine-tune Vv
Rank-1 52.7 54.3 819 82.6
Duke to Market mAP 248 268 561 567
Rank-1 371 399 72.0 72.8
Market to Duke mAP 206 227 515 52.3

attribute similarities are added to the identity similarities, im-
provements of 2.6% and 2.9% are achieved on these two datasets
respectively. Such improvements show that attribute recogni-
tion plays a certain role in assisting person re-identification.
After several iterations for fine-tuning, the final results achieve
82.6% and 72.8% in rank-1 accuracy on the Market-1501 dataset
and DukeMTMC re-ID dataset respectively, exceeding the results
without the attribute fine-tuning process by 0.7% and 0.8%, which
demonstrate the effectiveness of the label refinery mechanism.

Fine-tuning. Several works demonstrate that fine-tuning is a
powerful strategy in unsupervised domain adaptation tasks. We
fine-tune the SDA-based feature extraction network with the
pseudo identity labels. The experimental results show that the
rank-1 accuracy is increased by 29.2% on the Market-1501 dataset
and 32.7% on the DukeMTMC re-ID dataset. As for the attribute
recognition module, we also assign pseudo attribute labels ac-
cording to the attribute prediction results. After fine-tuning for
the attributes recognition with the label refinery mechanism, our
final framework achieves 82.6% rank-1 accuracy on the Market-
1501 dataset and 72.8% on the DukeMTMC re-ID dataset. Fig. 10
illustrates the accuracy of two models during the iterations of
fine-tuning process. We can observe from the results that both
two models perform better as the number of iterations increases,
which verifies the effectiveness of all the sub-networks in our
proposed method.

4.6. Visualization

To further investigate the discriminative ability of the itera-
tive clustering strategy, we randomly select 10 identities with
their images from the target dataset and extract their feature
embeddings during iterations. We use t-SNE [82] to visualize
the embeddings by plotting their 2-dimension feature represen-
tations in Fig. 11. Each point represents one image and points
with the same color indicate pedestrians with the same identity.
From the visualization results, we can observe that our model
is better than direct transfer after the first stage of iteration.
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Fig. 11. Feature distributions visualized by t-SNE. Fig. 11(a): The model
is trained on Market-1501 and directly transferred to DukeMTMC-relD.
Fig. 11(b)(c)(d): The results of our proposed SDA-based model after fine-tuning
3, 6 and 10 iterations respectively.

By increasing the number of iterations, we observe a clear and
constant gathering of points with the same color, which indicates
that the model has gradually learned more discriminative feature
representations. This visualization demonstrates that our pro-
posed SDAAL effectively strengthen the discriminability of feature
representations, thus enforcing the target images with the same
identity to gather together based on their similarities after some
stage of iterations.

5. Conclusion

In this research, we propose a novel Semantic Driven Attention
network with Attribute Learning method (SDAAL) in solving the
existing challenges of traditional UDA-based person re-ID tech-
niques. In order to remedy the varying backgrounds induced
negative transfer, we introduce the body structure estimation
enforced Semantic Driven Attention network, which effectively
reduces the negative impacts caused by the varying backgrounds
as well as enjoys high training efficiency. Additionally, we pro-
pose a novel label refinery mechanism in order to properly opti-
mize the attribute feature learning model for extracting reliable
attribute feature representations, and thus yielding the qualified
UDA re-ID. Extensive experimental results demonstrate that our
proposed framework achieves very competitive re-ID accuracies
to the state-of-the-art approaches. Future work includes hybridiz-
ing the META learning techniques into the paradigm of SDAAL for
searching the best candidate hyper-parameters to accelerate the
global optimization and lift the accuracy simultaneously.
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